Subscribe to RSS
DOI: 10.1055/a-1493-3564
Perspectives for Uranyl Photoredox Catalysis
The authors are grateful for financial support provided by the National Natural Science Foundation of China (NSFC; 21971065), the Science and Technology Commission of Shanghai Municipality (STCSM; 20XD1421500, 20JC1416800, and 18JC1415600), the Innovative Research Team of High-Level Local Universities in Shanghai (SSMU-ZLCX20180501), the Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, and the Fundamental Research Funds for the Central Universities.
Abstract
The application of uranyl salts as powerful photoredox catalysts in chemical transformations lags behind the advances achieved in thermocatalysis and structural chemistry. In fact, uranyl cations (UO2 2+) have proven to be ideal photoredox catalysts in visible-light-driven chemical reactions. The excited state of uranyl cations (*UO2 2+) that is generated by visible-light irradiation has a long-lived fluorescence lifetime up to microseconds and high oxidizing ability [E o = +2.6 V vs. standard hydrogen electrode (SHE)]. After ligand-to-metal charge transfer (LMCT), quenching occurs with organic substrates via hydrogen-atom transfer (HAT) or single-electron transfer (SET). Interestingly, the ground state and excited state of uranyl cations (UO2 2+) are chemically inert toward oxygen molecules, preventing undesired transformations from active oxygen species. This review summarizes recent advances in photoredox transformations enabled by uranyl salts.
1 Introduction
2 The Application of Uranyl Photoredox Catalysis in HAT Mode
3 The Application of Uranyl Photoredox Catalysis in SET Mode
4 Conclusion and Outlook
Key words
uranyl salts - ligand-to-metal charge transfer - hydrogen-atom transfer - single-electron transfer - photoredox transformationsPublication History
Received: 16 March 2021
Accepted after revision: 28 April 2021
Accepted Manuscript online:
28 April 2021
Article published online:
20 May 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Hubbell MW. The Fundamentals of Nuclear Power Generation: Questions and Answers. Author House; Bloomington: 2011
- 2a McGlynn SP, Smith JK. J. Mol. Spectrosc. 1961; 6: 164
- 2b McGlynn SP, Smith JK, Neely WC. J. Chem. Phys. 1961; 35: 105
- 3 Liddle ST. Angew. Chem. Int. Ed. 2015; 54: 8604
- 4 Hayton TW, Boncella JM, Scott BL, Palmer PD, Batista ER, Hay PJ. Science 2005; 310: 1941
- 5 Burrows HD, Kemp TJ. Chem. Soc. Rev. 1974; 3: 139
- 6a Sethi S, Panigrahi R, Paul AK, Mallik BS, Parhi P, Das PK, Behera N. Dalton Trans. 2020; 10603
- 6b Denning RG. J. Phys. Chem. A 2007; 111: 4125
- 7 Cowie BE, Purkis JM, Austin J, Love JB, Arnold PL. Chem. Rev. 2019; 119: 10595
- 8a Balzani V, Bolletta F, Gandolfi MT, Maestri M. Top. Curr. Chem. 1978; 75: 1
- 8b Fortier S, Hayton TW. Coord. Chem. Rev. 2010; 254: 197
- 8c Li Y, Su J, Mitchell E, Zhang G, Li J. Sci. China Chem. 2013; 56: 1671
- 8d Behera N, Sethi S. Eur. J. Inorg. Chem. 2021; 95
- 9a McGrail BT, Pianowski LS, Burns PC. J. Am. Chem. Soc. 2014; 136: 4797
- 9b Nocton G, Horeglad P, Vetere V, Pécaut J, Dubois L, Maldivi P, Edelstein NM, Mazzanti M. J. Am. Chem. Soc. 2010; 132: 495
- 9c Takao K, Tsushima S. Dalton Trans. 2018; 5149
- 9d Natrajan L, Burdet F, Pécaut J, Mazzanti M. J. Am. Chem. Soc. 2006; 128: 7152
- 9e Sarsfield MJ, Helliwell M. J. Am. Chem. Soc. 2004; 126: 1036
- 9f Vidya K, Kamble VS, Selvam P, Gupta NM. Appl. Catal., B 2004; 54: 145
- 9g Wang ZM, Zachara JM, Gassman PL, Liu CX, Qafoku O, Yantasee W, Catalano JG. Geochim. Cosmochim. Acta 2005; 69: 1391
- 10a Wang KX, Chen JS. Acc. Chem. Res. 2011; 44: 531
- 10b Fredenhagen K, Krefft OT. Z. Elektrochem. 1929; 35: 670
- 12a McCleskey TM, Burns CJ, Tumas W. Inorg. Chem. 1999; 38: 5924
- 12b Bakac A, Espenson JH. Inorg. Chem. 1995; 34: 1730
- 12c Suib SL, Carrado KA. Inorg. Chem. 1985; 24: 863
- 14a Yu J, Chen S, Liu K, Yuan L, Zhao Y, Chai Z, Mei L. Tetrahedron Lett. 2020; 61: 152076
- 14b Takao K, Akashi S. RSC Adv. 2017; 7: 12201
- 14c Enthaler S. Chem. Eur. J. 2011; 17: 9316
- 14d van Axel Castelli V, Dalla Cort A, Mandolini L, Reinhoudt DN, Schiaffino L. Eur. J. Org. Chem. 2003; 627
- 15 Mao Y, Bakac A. J. Phys. Chem. 1996; 100: 4219
- 16 Matsushima R. J. Am. Chem. Soc. 1972; 94: 6010
- 17 Arnold PL, Purkis JM, Rutkauskaite R, Kovacs D, Love JB, Austin J. ChemCatChem 2019; 11: 3786
- 18 Mashita T, Tsushima S, Takao K. ACS Omega 2019; 4: 7194
- 19 Mashita T, Tsushima S, Takao K. Dalton Trans. 2018; 13072
- 20 Luo YR. Comprehensive Handbook of Chemical Bond Energies. CRC Press; Boca Raton: 2007
- 21 Murayama E, Sato T. Bull. Chem. Soc. Jpn. 1978; 51: 3022
- 22 Wang WD, Bakac A, Espenson JH. Inorg. Chem. 1995; 34: 6034
- 23 Balzani V, Carassiti V. Photochemistry of Coordination Compounds. Academic Press; London: 1970
- 24 Krishna V, Kamble VS, Gupta NM, Selvam P. J. Phys. Chem. C 2008; 112: 15832
- 25a Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 25b Wang J, Sánchez-Roselló M, Aceña JL. del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
- 25c Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J. Med. Chem. 2015; 58: 8315
- 26 West JG, Bedell TA, Sorensen EJ. Angew. Chem. Int. Ed. 2016; 55: 8923
- 27 Wu LL, Cao XY, Chen XB, Fang WH, Dolg M. Angew. Chem. Int. Ed. 2018; 57: 11812
- 28a Bloom S, Knippel JL, Lectka T. Chem. Sci. 2014; 5: 1175
- 28b Xia JB, Zhu C, Chen C. Chem. Commun. 2014; 50: 11701
- 29 Azam M, Al-Resayes SI, Trzesowska-Kruszynska A, Kruszynski R, Kumar P, Jain SL. Polyhedron 2017; 124: 177
- 30 Capaldo L, Merli D, Fagnoni M, Ravelli D. ACS Catal. 2019; 9: 3054
- 31 Yu JP, Zhao CY, Zhou R, Gao WC, Wang S, Liu K, Chen SY, Hu KQ, Mei L, Yuan LY, Chai ZF, Hu HS, Shi WQ. Chem. Eur. J. 2020; 26: 16521
- 32a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 32b Ghosh I, Mukhopadhyay A, Koner AL, Samanta S, Nau WM, Moorthy JN. Phys. Chem. Chem. Phys. 2014; 16: 16436
- 32c Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 32d Srivastava V, Singh PP. RSC Adv. 2017; 7: 31377
- 32e Marzo L, Pagire SK, Reiser O, König B. Angew. Chem. Int. Ed. 2018; 57: 10034
- 32f Shang TY, Lu LH, Cao Z, Liu Y, He WM, Yu B. Chem. Commun. 2019; 55: 5408
- 32g Yu XY, Chen JR, Xiao WJ. Chem. Rev. 2021; 121: 506
- 33a Nozaki Y. EOS, Trans. Am. Geophys. Union 1997; 78: 221
- 33b Yannone SM, Hartung S, Menon AL, Adams MW. W, Tainer JA. Curr. Opin. Biotechnol. 2012; 23: 89
- 33c Odoh SO, Bondarevsky GD, Karpus J, Cui Q, He C, Spezia R, Gagliardi L. J. Am. Chem. Soc. 2014; 136: 17484
- 34 Volesky B, Holan ZR. Biotechnol. Prog. 1995; 11: 235
- 35a Nielsen PE, Jeppesen C, Buchardt O. FEBS Lett. 1988; 235: 122
- 35b Bassi GS, Møllegaard NE, Murchie AI. H, Lilley DM. Biochemistry 1999; 38: 3345
- 36 Elnegaard RL. B, Møllegaard NE, Zhang Q, Kjeldsen F, Jørgensen TJ. D. ChemBioChem 2017; 18: 1117
- 37 Kristensen LH, Nielsen PE, Jørgensen CI, Kragelund BB, Møllegaard NE. ChemBioChem 2008; 9: 2377
- 38a Matsushima R. J. Am. Chem. Soc. 1972; 94: 6010
- 38b Mooney W, Chauveau F, Thu HT. T, Folcher G, Giannotti C. J. Chem. Soc., Perkin Trans. 2 1988; 1479
- 38c Park YY, Tomiyasu H. J. Photochem. Photobiol., A 1992; 64: 25
- 39 McCleskey TM, Burns CJ, Tumas W. Inorg. Chem. 1999; 38: 5924
- 40 Kemp TJ, Shand MA. Inorg. Chim. Acta 1986; 114: 215
- 41 Mao Y, Bakac A. J. Phys. Chem. A 1997; 101: 7929
- 42 Sarakha M, Bolte M, Burrows HD. J. Phys. Chem. A 2000; 104: 3142
- 43 Sarakha M, Bolte M, Burrows HD. J. Photochem. Photobiol., A 1997; 107: 101
- 44 Li YM, Rizvi A.-e-A, Hu DQ, Sun DW, Gao AH, Zhou YB, Li J, Jiang XF. Angew. Chem. Int. Ed. 2019; 58: 13499