Subscribe to RSS
DOI: 10.1055/a-1506-5532
Modern Organoselenium Catalysis: Opportunities and Challenges
We thank the National Natural Science Foundation of China (91856109 and 21772239), the Fundamental Research Funds for the Central Universities (20lgzd21), and the Leading Scientific, Technical and Innovation Talents of Guangdong Special Support Program (2019TX05Y638), and the China Postdoctoral Science Foundation (2020M683018) for the financial support.
Abstract
Organoselenium catalysis has attracted increasing interest in recent years. This Cluster highlights recent key advances in this area regarding the functionalization of alkenes, alkynes, and arenes by electrophilic selenium catalysis, selenonium salt catalysis, selenium-based chalcogen-bonding catalysis, and Lewis basic selenium catalysis. These achievements might inspire and help future research.
1 Introduction
2 Electrophilic Selenium Catalysis
3 Selenonium Salt Catalysis
4 Selenium-Based Chalcogen-Bond Catalysis
5 Lewis Basic Selenide Catalysis
6 Conclusion
Key words
organoselenium catalysis - electrophilic selenium - selenonium salt - chalcogen bonding - Lewis basic seleniumPublication History
Received: 11 April 2021
Accepted: 11 May 2021
Accepted Manuscript online:
11 May 2021
Article published online:
08 June 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Fernandes AP, Gandin V. Biochim. Biophys. Acta 2015; 1850: 1642
- 1b Shaaban S, Ashmawy AM, Negm A, Wessjohann LA. Eur. J. Med. Chem. 2019; 179: 515
- 1c Davies MJ, Schiesser CH. New J. Chem. 2019; 43: 9759
- 1d Li F, Li T, Sun C, Xia J, Jiao Y, Xu H. Angew. Chem. Int. Ed. 2017; 56: 9910
- 1e Xia J, Zhao P, Zheng K, Lu C, Yin S, Xu H. Angew. Chem. Int. Ed. 2019; 58. 542
- 1f Armstrong RJ, Nandakumar M, Dias RM. P, Noble A, Myers EL, Aggarwal VK. Angew. Chem. Int. Ed. 2018; 57: 8203
- 1g Teskey CJ, Adler P, Gonçalves CR, Maulide N. Angew. Chem. Int. Ed. 2019; 58: 447
- 2a Wirth T. Organoselenium Chemistry: Synthesis and Reactions. Wiley-VCH; Weinheim: 2012
- 2b Lenardão EJ, Santi C, Sancineto L. New Frontiers in Organoselenium Compounds . Springer; Heidelberg: 2018
- 2c Freudendahl DM, Shahzad SA, Wirth T. Eur. J. Org. Chem. 2009; 1649
- 2d Mukherjee AJ, Zade SS, Singh HB, Sunoj RB. Chem. Rev. 2010; 110: 4357
- 3a Freudendahl DM, Santoro S, Shahzad SA, Santi C, Wirth T. Angew. Chem. Int. Ed. 2009; 48: 8409
- 3b Santi C, Santoro S, Battistelli B. Curr. Org. Chem. 2010; 14: 2442
- 3c Breder A, Ortgies S. Tetrahedron Lett. 2015; 56: 2843
- 3d Ortgies S, Breder A. ACS Catal. 2017; 7: 5828
- 3e Singh FV, Wirth T. Catal. Sci. Technol. 2019; 9: 1073
- 3f Rathore V, Jose C, Kumar S. New J. Chem. 2019; 43: 8852
- 3g Shao L, Li Y, Lu J, Jiang X. Org. Chem. Front. 2019; 6: 2999
- 3h Cao H, Qian R, Yu L. Catal. Sci. Technol. 2020; 10: 3113
- 3i Matviitsuk A, Panger JL, Denmark SE. Angew. Chem. Int. Ed. 2020; 59: 19796
- 4a Luo J, Liu X, Zhao X. Synlett 2017; 28: 397
- 4b Guo R, Liao L, Zhao X. Molecules 2017; 22: 835
- 4c Xu Y, Liao L, Zhao X. Chemistry 2020; 83: 970
- 4d Jiang Q, Zhao X. Chin. J. Org. Chem. 2021; 41: 443
- 4e Liao L, Zhao X. Chem. Lett. 2021; 50: 1104
- 5a Santoro S, Santi C, Sabatini M, Testaferri L, Tiecco M. Adv. Synth. Catal. 2008; 350: 2881
- 5b Toorn JC, Kemperman G, Sheldon RA, Arends IW. C. E. J. Org. Chem. 2009; 74: 3085
- 5c Yu L, Li H, Zhang X, Ye J, Liu J, Xu Q, Lautens M. Org. Lett. 2014; 16: 1346
- 5d Wang T, Jing X, Chen C, Yu L. J. Org. Chem. 2017; 82: 9342
- 6a Iwama T, Matsumoto H, Ito T, Shimizu H, Kataoka T. Chem. Pharm. Bull. 1998; 46: 913
- 6b Jin W, Zheng P, Wong W.-T, Law G.-L. Adv. Synth. Catal. 2017; 359: 1588
- 7a Crich D, Neelamkavil S, Sartillo-Piscil F. Org. Lett. 2000; 2: 4029
- 7b Curran SP, Connon SJ. Org. Lett. 2012; 14: 1074
- 7c Trofymchuk OS, Zheng Z, Kurogi T, Mindiola DJ, Walsh PJ. Adv. Synth. Catal. 2018; 360: 1685
- 7d Akondi SM, Gangireddy P, Pickel TC, Liebeskind LS. Org. Lett. 2018; 20: 538
- 7e Handoko Handoko, Satishkumar S, Panigrahi NR, Arora PS. J. Am. Chem. Soc. 2019; 141: 15977
- 7f Handoko Handoko, Benslimane Z, Arora PS. Org. Lett. 2020; 22: 5811
- 8a Hori T, Sharpless KB. J. Org. Chem. 1979; 44: 4204
- 8b lwaoka M, Tomoda S. J. Chem. Soc., Chem. Commun. 1992; 1165
- 8c Uneyama K, Asai H, Dan-oh Y, Matta H. Electrochim. Acta 1997; 42: 2005
- 8d Browne DM, Niyomura O, Wirth T. Org. Lett. 2007; 9: 3169
- 8e Trenner J, Depken C, Weber T, Breder A. Angew. Chem. Int. Ed. 2013; 52: 8952
- 8f Krätzschmar F, Kaßel M, Delony D, Breder A. Chem. Eur. J. 2015; 21: 7030
- 8g Cresswell AJ, Eey ST.-C, Denmark SE. Nat. Chem. 2015; 7: 146
- 8h Guo R, Huang J, Huang H, Zhao X. Org. Lett. 2016; 18: 504
- 8i Liao L, Guo R, Zhao X. Angew. Chem. Int. Ed. 2017; 56: 3201
- 8j Depken C, Krätzschmar F, Rieger R, Rode K, Breder A. Angew. Chem. Int. Ed. 2018; 57: 2459
- 8k Guo R, Huang J, Zhao X. ACS Catal. 2018; 8: 926
- 8l Wilken M, Ortgies S, Breder A, Siewert I. ACS Catal. 2018; 8: 10901
- 8m Yan D, Wang G, Xiong F, Sun W.-Y, Shi Z, Lu Y, Li S, Zhao J. Nat. Commun. 2018; 9: 4293
- 8n Wang X, Wang Q, Xue Y, Sun K, Wu L, Zhang B. Chem. Commun. 2020; 56: 4436
- 8o Toledano-Pinedo M, Campo TM, Tiemblo M, Fernández I, Almendros P. Org. Lett. 2020; 22: 3979
- 8p Chuang HY, Schupp M, Meyrelles R, Maryasin B, Maulide N. Angew. Chem. Int. Ed. 2021; 60: in press
- 9a Fukuzawa S.-i, Takahashi K, Kato H, Yamazaki H. J. Org. Chem. 1997; 62: 7711
- 9b Wirth T, Häuptli S, Leuenberger M. Tetrahedron: Asymmetry 1998; 9: 547
- 9c Tiecco M, Testaferri L, Santi C, Tomassini C, Marini F, Bagnoli L, Temperini A. Tetrahedron: Asymmetry 2000; 11: 4645
- 9d Tiecco M, Testaferri L, Santi C, Tomassini C, Marini F, Bagnoli L, Temperini A. Chem. Eur. J. 2002; 8: 1118
- 9e Browne DM, Niyomura O, Wirth T. Org. Lett. 2007; 9: 3169
- 10a Kawamata Y, Hashimoto T, Maruoka K. J. Am. Chem. Soc. 2016; 138: 5206
- 10b Otsuka Y, Shimazaki Y, Nagaoka H, Maruoka K, Hashimoto T. Synlett 2019; 30: 1679
- 10c Gilbert BB, Eey ST.-C, Ryabchuk P, Garry O, Denmark SE. Tetrahedron 2019; 75: 4086
- 10d Tao Z, Gilbert BB, Denmark SE. J. Am. Chem. Soc. 2019; 141: 19161
- 11a Liao L, Zhang H, Zhao X. ACS Catal. 2018; 8: 6745
- 11b Wang L.-W, Feng Y.-F, Lin H.-M, Tang H.-T, Pan Y.-M. J. Org. Chem. 2021; in press
- 11c Rode K, Narasimhamurthy PR, Rieger R, Krätzschmar F, Breder A. Eur. J. Org. Chem. 2021; 1720
- 12a Zheng T, Tabor JR, Stein ZL, Michael FE. Org. Lett. 2018; 20: 6975
- 12b Tabor JR, Obenschain DC, Michael FE. Chem. Sci. 2020; 11: 1677
- 12c Teh WP, Obenschain DC, Black BM, Michael FE. J. Am. Chem. Soc. 2020; 142: 16716
- 13a Lenardão EJ, Mendes SR, Ferreira PC, Perin G, Silveira CC, Jacob RG. Tetrahedron Lett. 2006; 47: 7439
- 13b Lenardão EJ, Borges EL, Mendes SR, Perin G, Jacob RG. Tetrahedron Lett. 2008; 49: 1919
- 13c Lenardão EJ, Feijó JO, Thurow S, Perin G, Jacob RG, Silveira CC. Tetrahedron Lett. 2009; 50: 5215
- 14 He X, Wang X, Tse Y.-L, Ke Z, Yeung Y.-Y. Angew. Chem. Int. Ed. 2018; 57: 12869
- 15a Vogel L, Wonner P, Huber SM. Angew. Chem. Int. Ed. 2019; 58: 1880
- 15b Bamberger J, Ostler F, Mancheño OG. ChemCatChem 2019; 11: 5198
- 15c Kolb S, Oliver GA, Werz DB. Angew. Chem. Int. Ed. 2020; 59: 22306
- 15d Breugst M, Koenig JJ. Eur. J. Org. Chem. 2020; 5473
- 16a Benz S, Mareda J, Besnard C, Sakai N, Matile S. Chem. Sci. 2017; 8: 8164
- 16b Wonner P, Vogel L, Kniep F, Huber SM. Chem. Eur. J. 2017; 23: 16972
- 16c Wang W, Zhu H, Liu S, Zhao Z, Zhang L, Hao J, Wang Y. J. Am. Chem. Soc. 2019; 141: 9175
- 16d Wang W, Zhu H, Feng L, Yu Q, Hao J, Zhu R, Wang Y. J. Am. Chem. Soc. 2020; 142: 3117
- 16e Kong X, Zhou P.-P, Wang Y. Angew. Chem. Int. Ed. 2021; 60: 9395
- 17 Mellegaard SR, Tunge JA. J. Org. Chem. 2004; 69: 8979
- 18a Denmark SE, Kalyani D, Collins WR. J. Am. Chem. Soc. 2010; 132: 1742
- 18b Denmark SE, Kornfilt DJ. P, Vogler T. J. Am. Chem. Soc. 2011; 133: 15308
- 18c Chen F, Tan CK, Yeung Y.-Y. J. Am. Chem. Soc. 2013; 135: 1232
- 18d Tao Z, Robb KA, Panger JL, Denmark SE. J. Am. Chem. Soc. 2018; 140: 15621
- 18e Luo J, Cao Q, Cao X, Zhao X. Nat. Commun. 2018; 9: 527
- 18f Liu X, Liang Y, Ji J, Luo J, Zhao X. J. Am. Chem. Soc. 2018; 140: 4782
- 18g Roth A, Denmark SE. J. Am. Chem. Soc. 2019; 141: 13767
- 18h Xie Y.-Y, Chen Z.-M, Luo H.-Y, Shao H, Tu Y.-Q, Bao X, Cao R.-F, Zhang S.-Y, Tian J.-M. Angew. Chem. Int. Ed. 2019; 58: 12491
- 18i Liang Y, Zhao X. ACS Catal. 2019; 9: 6896
- 18j Zhang Y, Liang Y, Zhao X. ACS Catal. 2021; 11: 3755
- 19a Peruzzini M, Gonsalvi L. Phosphorus Compounds: Advanced Tools in Catalysis and Material Sciences. Springer; Berlin, Heidelberg: 2011
- 19b Phosphorus Heterocycles II. In Topics in Heterocyclic Chemistry. Bansal RK. Springer; Berlin: 2016
- 19c Tang W, Zhang X. Chem. Rev. 2003; 103: 3029
- 19d Xie J.-H, Zhou Q.-L. Acc. Chem. Res. 2008; 41: 581
- 19e Dutartre M, Bayardon J, Jugé S. Chem. Soc. Rev. 2016; 45: 5771
- 19f Cabré A, Riera A, Verdaguer X. Acc. Chem. Res. 2020; 53: 676
- 20 Guo R, Liu Z, Zhao X. CCS Chem. 2020; 2: 2617
For selected books and reviews, see:
For selected reviews, see:
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected books and reviews, see: