Synthesis 2021; 53(20): 3791-3798 DOI: 10.1055/a-1521-3166
Electrochemical Aromatization of Dihydroazines: Effect of Chalcogenophosphoryl (CGP) Substituents on Anodic Oxidation of 9-CGP-9,10-dihydroacridine
a
Institute of Organic Synthesis of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620990 Ekaterinburg, Russian Federation
,
a
Institute of Organic Synthesis of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620990 Ekaterinburg, Russian Federation
,
a
Institute of Organic Synthesis of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620990 Ekaterinburg, Russian Federation
,
a
Institute of Organic Synthesis of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620990 Ekaterinburg, Russian Federation
,
Tatyana Yu. Shimanovskaya
a
Institute of Organic Synthesis of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620990 Ekaterinburg, Russian Federation
,
a
Institute of Organic Synthesis of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620990 Ekaterinburg, Russian Federation
,
Pavel A. Volkov
b
A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., Irkutsk 664033, Russian Federation
,
b
A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., Irkutsk 664033, Russian Federation
,
b
A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., Irkutsk 664033, Russian Federation
,
a
Institute of Organic Synthesis of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620990 Ekaterinburg, Russian Federation
› Author Affiliations The research was financially supported by the Russian Foundation for Basic Research (research project No. 19-29-08037). P.V. and A.T. thank the Russian Science Foundation for the financial support (Grant No. 18-73-10080).
Abstract
The effect of chalcogenophosphoryl fragments on the anodic oxidation of 9-chalcogenophosphoryl-9,10-dihydroacridines was studied in detail. The data of X-ray structural analyses, quantum chemical calculations, and cyclic voltammetry measurements obtained for these compounds provide an explanation of the observed features. The direct electrochemical phosphorylation of acridine was first carried out successfully.
Key words
electrochemical phosphorylation -
anodic oxidation -
C–H functionalization -
green chemistry -
acridine
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-1521-3166.
Supporting Information
Publication History
Received: 01 March 2021
Accepted after revision: 31 May 2021
Accepted Manuscript online: 31 May 2021
Article published online: 21 June 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1a
Camidge DR,
Kim HR,
Ahn M.-J,
Yang JC.-H,
Han J.-Y,
Lee J.-S,
Hochmair MJ,
Li JY.-C,
Chang G.-C,
Lee KH,
Gridelli C,
Delmonte A,
Garcia Campelo R,
Kim D.-W,
Bearz A,
Griesinger F,
Morabito A,
Felip E,
Califano R,
Ghosh S,
Spira A,
Gettinger SN,
Tiseo M,
Gupta N,
Haney J,
Kerstein D,
Popat S.
N. Engl. J. Med. 2018; 379: 2027
1b
Demmer CS,
Krogsgaard-Larsen N,
Bunch L.
Chem. Rev. 2011; 111: 7981
2a
Kumar S,
Kaushik G,
Dar MA,
Nimesh S,
López-Chukenu IJ,
Villarreal-Chiu JF.
Pedosphere 2018; 28: 190
2b
Németh G,
Greff Z,
Sipos A,
Varga Z,
Székely R,
Sebestyén M,
Jászay Z,
Béni S,
Nemes Z,
Pirat JL,
Volle JN,
Virieux D,
Gyuris Á,
Kelemenics K,
Áy É,
Minarovits J,
Szathmary S,
Kéri G,
Orfi L.
J. Med. Chem. 2014; 57: 3939
3
Butkevich AN,
Sednev MV,
Shojaei H,
Belov VN,
Hell SW.
Org. Lett. 2018; 20: 1261
4
Guo Y,
Fu H,
Chen H,
Li X.
Catal. Commun. 2008; 9: 1842
5a
Autio J,
Vuoti S,
Haukka M,
Pursiainen J.
Inorg. Chim. Acta 2008; 361: 1372
5b
Zink DM,
Bächle M,
Baumann T,
Nieger M,
Kühn M,
Wang C,
Klopper W,
Monkowius U,
Hofbeck T,
Yersin H,
Bräse S.
Inorg. Chem. 2013; 52: 2292
5c
Chang YC,
Chang WC,
Hu CY,
Hong FE.
Organometallics 2014; 33: 3523
5d
Cuperly D,
Gros P,
Fort Y.
J. Org. Chem. 2002; 67: 238
6a
Zhang HY,
Sun M,
Ma YN,
Tian QP,
Yang SD.
Org. Biomol. Chem. 2012; 10: 9627
6b
Srinivas V,
Swamy KC. K.
ARKIVOC 2009; (xii): 31
6c
De Blieck A,
Masschelein KG. R,
Dhaene F,
Rozycka-Sokolowska E,
Marciniak B,
Drabowicz J,
Stevens CV.
Chem. Commun. 2010; 46: 258
7a
Deal EL,
Petit C,
Montchamp JL.
Org. Lett. 2011; 13: 3270
7b
Johansson T,
Stawinski J.
Chem. Commun. 2001; 1: 2564
7c
Ziessel RF,
Charbonnière LJ,
Mameri S,
Camerel F.
J. Org. Chem. 2005; 70: 9835
7d
Diesters H,
Zhuang R,
Xu J,
Cai Z,
Tang G,
Fang M.
Org. Lett. 2011; 13: 2110
7e
Gerbier P,
Guérin C,
Henner B,
Unal JR.
J. Mater. Chem. 1999; 9: 2559
7f
Bessmertnykh A,
Douaihy CM,
Muniappan S,
Guilard R.
Synthesis 2008; 1575
8a
Xiang C.-B,
Bian Y.-J,
Mao X.-R,
Huang Z.-Z.
J. Org. Chem. 2012; 77: 7706
8b
Terrier F.
Modern Nucleophilic Aromatic Substitution
. Wiley-VCH; Weinheim: 2013
8c
Kagayama T,
Nakano A,
Sakaguchi S,
Ishii Y.
Org. Lett. 2006; 8: 407
8d
Kim SH,
Kim SH,
Lim CH,
Kim JN.
Tetrahedron Lett. 2013; 54: 1697
8e
Budnikova YH,
Sinyashin OG.
Russ. Chem. Rev. 2015; 84: 917
9a
Chupakhin ON,
Charushin VN.
Tetrahedron Lett. 2016; 57: 2665
9b
Trofimov BA,
Volkov PA,
Khrapova KO,
Telezhkin AA,
Ivanova NI,
Albanov AI,
Gusarova NK,
Chupakhin ON.
Chem. Commun. 2018; 54: 3371
9c
Khutorianskyi VV,
Baris N,
Beier P.
Org. Chem. Front. 2021; 8: 77
9d
Chupakhin ON,
Charushin VN,
van der Plas HC.
Nucleophilic Aromatic Substitution of Hydrogen
. Academic Press; New York: 1994
10a
Charushin VN,
Chupakhin ON.
Top. Heterocycl. Chem. 2014; 37: 1
10b
Peng P,
Peng L,
Wang G,
Wang F,
Luo Y,
Lei A.
Org. Chem. Front. 2016; 3: 749
11
Gallardo I,
Guirado G.
Eur. J. Org. Chem. 2008; 2463
12a
Chupakhin ON,
Shchepochkin AV,
Charushin VN,
Maiorova AV,
Kulikova TV,
Shunyaev KY,
Enyashin AN,
Slepukhin PA,
Suvorova AI.
Chem. Heterocycl. Compd. 2019; 55: 956
12b
Fukuzumi S,
Tokuda Y,
Kutano T,
Okamoto T,
Otera J.
J. Am. Chem. Soc. 1993; 115: 8960
13
Chupakhin ON,
Shchepochkin AV,
Charushin VN.
Adv. Heterocycl. Chem. 2020; 131: 1
14a
Kärkäs MD.
Chem. Soc. Rev. 2018; 47: 5786
14b
Waldvogel SR,
Lips S,
Selt M,
Riehl B,
Kampf CJ.
Chem. Rev. 2018; 118: 6706
14c
Wiebe A,
Gieshoff T,
Möhle S,
Rodrigo E,
Zirbes M,
Waldvogel SR.
Angew. Chem. Int. Ed. 2018; 57: 5594
14d
Yan M,
Kawamata Y,
Baran PS.
Chem. Rev. 2017; 117: 13230
14e
Möhle S,
Zirbes M,
Rodrigo E,
Gieshoff T,
Wiebe A,
Waldvogel SR.
Angew. Chem. Int. Ed. 2018; 57: 6018
14f
Jiang Y,
Xu K,
Zeng C.
Chem. Rev. 2018; 118: 4485
14g
Pollok D,
Waldvogel SR.
Chem. Sci. 2020; 11: 12386
15a
Yuan Y,
Qiao J,
Cao Y,
Tang J,
Wang M,
Ke G,
Lu Y,
Liu X,
Lei A.
Chem. Commun. 2019; 55: 4230
15b
Khrizanforov M,
Strekalova S,
Khrizanforova V,
Dobrynin A,
Kholin K,
Gryaznova T,
Grinenko V,
Gubaidullin A,
Kadirov MK,
Budnikova Y.
Top. Catal. 2018; 61: 1949
15c
Cruz H,
Gallardo I,
Guirado G.
Eur. J. Org. Chem. 2011; 7378
15d
Grayaznova TV,
Dudkina YB,
Islamov DR,
Kataeva ON,
Sinyashin OG,
Vicic DA,
Budnikova Y. Н.
J. Organomet. Chem. 2015; 785: 68
16a
Utepova IA,
Trestsova MA,
Chupakhin ON,
Charushin VN,
Rempel AA.
Green Chem. 2015; 17: 4401
16b
Chupakhin ON,
Shchepochkin AV,
Charushin VN.
Green Chem. 2017; 19: 2931
16c
Shchepochkin AV,
Chupakhin ON,
Charushin VN,
Steglenko DV,
Minkin VI,
Rusinov GL,
Matern AI.
RSC Adv. 2016; 6: 77834
17
Volkov PA,
Khrapova KO,
Telezhkin AA,
Ivanova NI,
Albanov AI,
Gusarova NK,
Trofimov BA.
Org. Lett. 2018; 20: 7388
18
Neese F.
WIREs Comput. Mol. Sci. 2012; 2: 73
19a
Knizia G,
Klein JE. M. N.
Angew. Chem. Int. Ed. 2015; 54: 5518
19b
Knizia G.
J. Chem. Theory Comput. 2013; 9: 4834
20a
Artem’ev AV,
Malysheva SF,
Gusarova NK,
Korocheva AO,
Timokhina LV,
Trofimov BA.
Russ. Chem. Bull. 2013; 62: 2495
20b
Gusarova NK,
Trofimov BA.
Russ. Chem. Rev. 2020; 89: 225
21
Dolomanov OV,
Bourhis LJ,
Gildea RJ,
Howard JA. K,
Puschmann H.
J. Appl. Crystallogr. 2009; 42: 339
22
Sheldrick GM.
Acta Crystallogr., Sect. A 2008; 64: 112