Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2021; 32(17): 1757-1761
DOI: 10.1055/a-1542-9683
DOI: 10.1055/a-1542-9683
letter
Cu-Catalyzed C–H Activation Reaction: One-Pot Direct Synthesis of Xanthine and Uric Acid Derivatives from 5-Bromouracil
We thank the Department of Science and Technology, Ministry of Science and Technology, India (DST, New Delhi) for financial assistance through DST PURSE program and DST fast track scheme. Two of us (SH & BM) are thankful to CSIR (New Delhi) and University of Kalyani, respectively, for research fellowships.
Abstract
A one-pot direct synthesis of xanthine and uric acid derivates is reported. This simple yet efficient methodology illustrates concurrent formation of two C–N bonds using CuBr2 as catalyst and one of those C–N bonds is formed by uracil C6–H bond activation.
Key words
C–H activation - C–N bond formation - xanthine - uric acids - copper - one-pot cyclizationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1542-9683.
- Supporting Information
Publication History
Received: 25 May 2021
Accepted after revision: 02 July 2021
Accepted Manuscript online:
02 July 2021
Article published online:
23 July 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Sadig JE. R, Willis MC. Synthesis 2011; 1
- 1b Bellina F, Rossi R. Adv. Synth. Catal. 2010; 352: 1223
- 1c Cho SH, Kim JY, Kwak J, Chang S. Chem. Soc. Rev. 2011; 40: 5068
- 1d Schlummer B, Scholz U. Adv. Synth. Catal. 2004; 346: 1599
- 1e Wu X.-F, Neumann H. Adv. Synth. Catal. 2012; 354: 3141
- 1f Ranu BC, Dey R, Chatterjee T, Ahammed S. ChemSusChem 2012; 5: 22
- 2a Kunz K, Scholz U, Ganzer D. Synlett 2003; 2428
- 2b Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400; Angew. Chem. 2003, 115, 5558
- 2c Beletskaya IP, Cheprakov AV. Coord. Chem. Rev. 2004; 248: 2337
- 2d Evano G, Blanchard N, Toumi M. Chem. Rev. 2008; 108: 3054 ; and references therein
- 3a Wolfe JP, Wagaw S, Marcoux J.-F, Buchwald SL. Acc. Chem. Res. 1998; 31: 805
- 3b Hartwig JF. Angew. Chem. Int. Ed. 1998; 37: 2046
- 3c Yang BH, Buchwald SL. J. Organomet. Chem. 1999; 576: 125
- 3d Surry DS, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 6338
- 3e Surry DS, Buchwald SL. Chem. Sci. 2011; 2: 27
- 3f Muci AR, Buchwald SL. Top. Curr. Chem. 2002; 219: 131
- 3g Schlummer B, Scholz U. Adv. Synth. Catal. 2004; 346: 1599
- 3h Sperotto E, van Klink GP. M, van Kotenand G, de Vries JG. Dalton Trans. 2010; 39: 10338
- 3i Monnier F, Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 6954
- 4a Tsang WC. P, Zheng N, Buchwald SL. J. Am. Chem. Soc. 2005; 127: 14560
- 4b Thu H.-Y, Yu W.-Y, Che C.-M. J. Am. Chem. Soc. 2006; 128: 9048
- 4c Xiao Q, Wang W. -H, Liu G, Meng F.-K, Chen J.-H, Yang Z, Shi Z.-J. Chem. Eur. J. 2009; 15: 7292
- 5 Hazra S, Mondal B, Rahaman H, Roy B. Eur. J. Org. Chem. 2014; 2806
- 6 Brasche G, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 1932
- 7a Kalla RV, Elzein E, Perry T, Li X, Palle V, Varkhedkar V, Gimbel A, Maa T, Zeng D, Zablocki J. J. Med. Chem. 2006; 49: 3682
- 7b Lin R.-Y, Wu B.-N, Lo Y.-C, An L.-M, Dai Z.-K, Lin Y.-T, Tang C.-S, Chen I.-J. J. Pharmacol. Exp. Ther. 2006; 316: 709
- 7c Ito K, Lim S, Caramori G, Cosio B, Chung KF, Adcock IM, Barnes PJ. Proc. Natl. Acad. Sci. U.S.A. 2002; 99: 8921
- 8 Nicholson CD, Jackman SA, Wilke R. Br. J. Pharmacol. 1989; 97: 889
- 9 Thiel M, Bardenheuer H, Poech G, Madel C, Peter K. Biochem. Res. Commun. 1991; 180: 53
- 10 Palacios JM, Beleta J, Segarra V. Farmaco 1995; 50: 819
- 11 Daly JW, Analogs of caffeine and theophylline: Activity as antagonists at adenosine receptors. In ‘Role of Adenosine and Adenine Nucleotides in the Biological System’. Imai S, Nakazawa M. Eds.; Elsevier Science Publishers; Amsterdam: 1991: 119-129
- 12 Stefanovich V. Drug News Perspect. 1989; 2: 82
- 13 Bright JJ, Du C, Coon M, Sriram S, Klaus SJ. J. Immunol. 1998; 161: 7051
- 14 Daly JW, Fredholm BB. Drug Alcohol Depend. 1998; 51: 199
- 15a Ding M, Bhupathiraju SN, Satija A, van Dam RM, Hu FB. Circulation 2014; 129: 643
- 15b Ker K, Edwards PJ, Felix LM, Blackhall K, Roberts I. Cochrane Database Syst. Rev. 2010; CD008508
- 15c van Dam RM. Appl. Physiol. Nutr. Metab. 2008; 33: 1269
- 15d Muriel P, Arauz J. Fitoterapia 2010; 81: 297
- 16 Chu Y.-F, Chen Y, Brown PH, Lyle BJ, Black RM, Cheng IH, Ouc BX, Prior RL. Food Chem. 2012; 131: 564
- 17 Arab L. Nutr. Cancer 2010; 62: 271
- 18a Szczepankiewicz BG, Rohde JJ, Kurukulasuriya R. Org. Lett. 2005; 7: 1833
- 18b Burbiel JC, Hockemeyer J, Müller CE. ARKIVOC 2006; (ii): 77
- 19 Hirota K, Sako M, Sajiki H. Heterocycles 1997; 46: 547
- 20 Roy B, Hazra S, Mondal B, Majumdar KC. Eur. J. Org. Chem. 2013; 4570
- 21a Zou B, Yuan Q, Ma D. Angew. Chem. Int. Ed. 2007; 46: 2598
- 21b Carril M, SanMartin R, Domínguez E. Chem. Soc. Rev. 2008; 37: 639
- 22 Rauws TR. M, Maes BU. W. Chem. Soc. Rev. 2012; 41: 2463
- 23a Anbazhagan M, Stephens CE, Boykin DW. Tetrahedron Lett. 2002; 43: 4221
- 23b Fulp AB, Johnson MS, Markworth CJ, Marron BE, Seconi DC, Wang X, West CW, Zhou S. WO 2009012242, 2009
- 23c Yin JJ, Zhao MM, Huffman MA, McNamara JM. Org. Lett. 2002; 4: 3481
- 23d Zhang HQ, Xia ZR, Vasudevan A, Djuric SW. Tetrahedron Lett. 2006; 47: 4881
- 24 General Procedure for the Preparation of Xanthine Derivatives To an oven-dried 25 mL round-bottom flask was added 5-bromouracil (1 mmol), acetamidine or benzamidine hydrochloride (1.4 mmol), CuBr2 (0.2 mmol), and Cs2CO3 (3 equiv) under nitrogen. Dry toluene (2 mL) was added with a syringe, and the mixture was degassed for 30 min. Then DMEDA (20 mol%) was added via a syringe under nitrogen. After the resulting reaction mixture was stirred for 36 h, the product was extracted with ethyl acetate and washed with water three times. The organic layer was dried over anhydrous Na2SO4 and filtered. Following concentration under reduced pressure, the residue was purified by silica gel chromatography to elute the product. 1,3,8-Trimethyl-1H-purine-2,6(3H,9H)-dione (3a) Yield 82%; mp >225 °C. IR (neat): 1644, 1709, 2965, 3049, 3105, 3158 cm–1. 1H NMR (CDCl3, 400 MHz): δ = 2.59 (s, 3 H, CCH3), 3.47 (s, 3 H, NCH3), 3.62 (s, 3 H, NCH3), 12.16 (s, 1 H, NH). 13C NMR (CDCl3, 100 MHz): δ = 14.7, 28.3, 30.2, 106.6, 149.6, 151.5, 152.0, 155.8. HRMS (TOF, MS, ES+): m/z calcd for C8H10N4O2H [M+ + H]: 195.0882; found: 195.0874.
- 25 Li S.-J, Lan Y. Chem. Commun. 2020; 56: 6609