Subscribe to RSS
DOI: 10.1055/a-1557-3201
Extrakorporale Behandlungsstrategien der Sepsis
Extracorporeal Strategies in the Treatment of SepsisZusammenfassung
Hintergrund Die Mortalität der Sepsis bleibt auch im 21. Jahrhundert sehr hoch. Verschiedene adjuvante Strategien zur extrakorporalen Zytokinelimination wurden als zusätzliche therapeutische Maßnahmen bei Sepsis und septischem Schock untersucht.
Ziele Zusammenfassung einer Auswahl extrakorporaler Blutreinigungstechniken und der aktuellen Erkenntnisse in der klinischen Anwendung mit besonderem Schwerpunkt auf dem therapeutischen Plasmaaustausch.
Methoden Nicht systematische Literaturrecherche.
Ergebnisse Verschiedene extrakorporale Blutreinigungstechniken mit unterschiedlichen Evidenzniveaus hinsichtlich Zytokinelimination, Verbesserung der Hämodynamik und Verringerung der Mortalität werden derzeit klinisch eingesetzt. Die am ausführlichsten untersuchten Modalitäten umfassen die hochvolumige Hämofiltration/Dialyse mit und ohne High-Cut-off-Filter sowie Hämoadsorptionstechniken (einschließlich CytoSorb- und Polymyxin-B-Filter). Trotz teilweise ermutigender Beobachtungen bezüglich der Entfernung proinflammatorischer Zytokine und verbesserten Hämodynamik zeigten randomisierte Outcome-Studien bislang keinen positiven Einfluss auf das Überleben. Aufgrund der Verwendung von Spenderplasma als Substitutionsflüssigkeit stellt der therapeutische Plasmaaustausch das einzige Verfahren dar, das neben einer reinen Elimination zusätzlich verbrauchte protektive Faktoren ersetzen kann.
Schlussfolgerungen Die Anwendung extrakorporaler Blutreinigungsmethoden kann für Sepsispatienten außerhalb klinischer Studien bisher nicht empfohlen werden, da derzeit keine Beweise für ihre Wirksamkeit vorliegen. Zukünftige Untersuchungen sollten darauf abzielen, das Patientenkollektiv hinsichtlich des klinischen Schweregrads, des Zeitpunkts der Intervention und verschiedener inflammatorischer (Sub-)Phänotypen zu homogenisieren.
Abstract
Background Mortality in sepsis remains high. Various techniques for extracorporeal cytokine removal have been investigated as additional therapeutic measures in sepsis and septic shock.
Objectives To summarize a selection of extracorporeal blood purification techniques, with a special focus on therapeutic plasma exchange, and their current evidence in clinical use.
Methods Non-systematic literature review.
Results Various extracorporeal blood purification techniques with different levels of evidence regarding cytokine removal, vasopressor sparing effects and reduction of mortality are currently in clinical use. Most extensively studied modalities include high-volume hemofiltration/dialysis with and without high cut-off filters a well as hemoadsorption techniques (including CytoSorb and polymyxin-B filters). Despite partly encouraging observations regarding removal of inflammatory cytokines and hemodynamic stabilization, results from randomized studies did not show an effect on survival. Due to use of donor plasma as substitution fluid, therapeutic plasma exchange represents the only modality able to additionally replace protective and consumed factors.
Conclusions The use of extracorporeal blood purification methods cannot be recommended for sepsis patients outside of clinical trials given the current lack of evidence of their efficacy. Future investigations should aim to homogenize the studied patient collective in respect to clinical sepsis severity, time point of intervention and different inflammatory (sub)-phenotypes.
Schlüsselwörter
septischer Schock - extrakorporale Verfahren - therapeutischer Plasmaaustausch - Hämoadsorption - ZytokineliminationKey words
septic shock - extracorporeal techniques - therapeutic plasma exchange - hemoadsorption - cytokine eliminationPublication History
Article published online:
15 February 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Singer M, Deutschman CS, Seymour CW. et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315: 801-810
- 2 Steinhagen F, Schmidt SV, Schewe JC. et al. Immunotherapy in sepsis – brake or accelerate?. Pharmacol Ther 2020; 208: 107476
- 3 Zhang G, Yang L, Kim GS. et al. Critical role of sphingosine-1-phosphate receptor 2 (S1PR2) in acute vascular inflammation. Blood 2013; 122: 443-455
- 4 Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med 2013; 369: 2063
- 5 Engel C, Brunkhorst FM, Bone HG. et al. Epidemiology of sepsis in Germany: results from a national prospective multicenter study. Intensive Care Med 2007; 33: 606-618
- 6 Fleischmann C, Scherag A, Adhikari NK. et al. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am J Respir Crit Care Med 2016; 193: 259-272
- 7 Stahl K, Seeliger B, David S. et al. What is evidence-based in the treatment of sepsis?. Internist 2020; 61: 1238-1248
- 8 Ankawi G, Neri M, Zhang J. et al. Extracorporeal techniques for the treatment of critically ill patients with sepsis beyond conventional blood purification therapy: the promises and the pitfalls. Crit Care 2018; 22: 262
- 9 Seeliger B, Stahl K, David S. Extracorporeal techniques for blood purification in sepsis: an update. Internist 2020; 61: 1010-1016
- 10 Villa G, Neri M, Bellomo R. et al. Nomenclature for renal replacement therapy and blood purification techniques in critically ill patients: practical applications. Crit Care 2016; 20: 283
- 11 Ronco C, Bellomo R, Homel P. et al. Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: a prospective randomised trial. Lancet 2000; 356: 26-30
- 12 VA/NIH Acute Renal Failure Trial Network. Palevsky PM, Zhang JH, OʼConnor TZ. et al. Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med 2008; 359: 7-20
- 13 RENAL Replacement Therapy Study Investigators. Bellomo R, Cass A, Cole L. et al. Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med 2009; 361: 1627-1638
- 14 Jun M, Heerspink HJ, Ninomiya T. et al. Intensities of renal replacement therapy in acute kidney injury: a systematic review and meta-analysis. Clin J Am Soc Nephrol 2010; 5: 956-963
- 15 Honore PM, Jamez J, Wauthier M. et al. Prospective evaluation of short-term, high-volume isovolemic hemofiltration on the hemodynamic course and outcome in patients with intractable circulatory failure resulting from septic shock. Crit Care Med 2000; 28: 3581-3587
- 16 Cole L, Bellomo R, Journois D. et al. High-volume haemofiltration in human septic shock. Intensive Care Med 2001; 27: 978-986
- 17 Joannes-Boyau O, Rapaport S, Bazin R. et al. Impact of high volume hemofiltration on hemodynamic disturbance and outcome during septic shock. ASAIO J 2004; 50: 102-109
- 18 Cornejo R, Downey P, Castro R. et al. High-volume hemofiltration as salvage therapy in severe hyperdynamic septic shock. Intensive Care Med 2006; 32: 713-722
- 19 Piccinni P, Dan M, Barbacini S. et al. Early isovolaemic haemofiltration in oliguric patients with septic shock. Intensive Care Med 2006; 32: 80-86
- 20 Boussekey N, Chiche A, Faure K. et al. A pilot randomized study comparing high and low volume hemofiltration on vasopressor use in septic shock. Intensive Care Med 2008; 34: 1646-1653
- 21 Joannes-Boyau O, Honore PM, Perez P. et al. High-volume versus standard-volume haemofiltration for septic shock patients with acute kidney injury (IVOIRE study): a multicentre randomized controlled trial. Intensive Care Med 2013; 39: 1535-1546
- 22 Borthwick EM, Hill CJ, Rabindranath KS. et al. High-volume haemofiltration for sepsis in adults. Cochrane Database Syst Rev 2017; (01) CD008075
- 23 Clark E, Molnar AO, Joannes-Boyau O. et al. High-volume hemofiltration for septic acute kidney injury: a systematic review and meta-analysis. Crit Care 2014; 18: R7
- 24 Morgera S, Rocktaschel J, Haase M. et al. Intermittent high permeability hemofiltration in septic patients with acute renal failure. Intensive Care Med 2003; 29: 1989-1995
- 25 Morgera S, Haase M, Rocktaschel J. et al. Intermittent high-permeability hemofiltration modulates inflammatory response in septic patients with multiorgan failure. Nephron Clin Pract 2003; 94: c75-c80
- 26 Villa G, Chelazzi C, Morettini E. et al. Organ dysfunction during continuous veno-venous high cut-off hemodialysis in patients with septic acute kidney injury: A prospective observational study. PloS One 2017; 12: e0172039
- 27 Morgera S, Haase M, Kuss T. et al. Pilot study on the effects of high cutoff hemofiltration on the need for norepinephrine in septic patients with acute renal failure. Crit Care Med 2006; 34: 2099-2104
- 28 Haase M, Bellomo R, Baldwin I. et al. Hemodialysis membrane with a high-molecular-weight cutoff and cytokine levels in sepsis complicated by acute renal failure: a phase 1 randomized trial. Am J Kidney Dis 2007; 50: 296-304
- 29 Chelazzi C, Villa G, DʼAlfonso MG. et al. Hemodialysis with High Cut-Off Hemodialyzers in Patients with Multi-Drug Resistant Gram-Negative Sepsis and Acute Kidney Injury: A Retrospective, Case-Control Study. Blood Purif 2016; 42: 186-193
- 30 Kielstein JT, David S. Pro: Renal replacement trauma or Paracelsus 2.0. Nephrol Dial Transplant 2013; 28: 2728-2731 discussion 2731–2723
- 31 Formica M, Olivieri C, Livigni S. et al. Hemodynamic response to coupled plasmafiltration-adsorption in human septic shock. Intensive Care Med 2003; 29: 703-708
- 32 Berlot G, Agbedjro A, Tomasini A. et al. Effects of the volume of processed plasma on the outcome, arterial pressure and blood procalcitonin levels in patients with severe sepsis and septic shock treated with coupled plasma filtration and adsorption. Blood Purif 2014; 37: 146-151
- 33 Livigni S, Bertolini G, Rossi C. et al. Efficacy of coupled plasma filtration adsorption (CPFA) in patients with septic shock: a multicenter randomised controlled clinical trial. BMJ Open 2014; 4: e003536
- 34 Giménez-Esparza C, Portillo-Requena C, Colomina-Climent F. et al. The premature closure of ROMPA clinical trial: mortality reduction in septic shock by plasma adsorption. BMJ Open 2019; 9: e030139
- 35 Cruz DN, Antonelli M, Fumagalli R. et al. Early use of polymyxin B hemoperfusion in abdominal septic shock: the EUPHAS randomized controlled trial. JAMA 2009; 301: 2445-2452
- 36 Payen DM, Guilhot J, Launey Y. et al. Early use of polymyxin B hemoperfusion in patients with septic shock due to peritonitis: a multicenter randomized control trial. Intensive Care Med 2015; 41: 975-984
- 37 Dellinger RP, Bagshaw SM, Antonelli M. et al. Effect of Targeted Polymyxin B Hemoperfusion on 28-Day Mortality in Patients With Septic Shock and Elevated Endotoxin Level: The EUPHRATES Randomized Clinical Trial. JAMA 2018; 320: 1455-1463
- 38 Klein DJ, Foster D, Walker PM. et al. Polymyxin B hemoperfusion in endotoxemic septic shock patients without extreme endotoxemia: a post hoc analysis of the EUPHRATES trial. Intensive Care Med 2018; 44: 2205-2212
- 39 Bonavia A, Groff A, Karamchandani K. et al. Clinical Utility of Extracorporeal Cytokine Hemoadsorption Therapy: A Literature Review. Blood Purif 2018; 46: 337-349
- 40 Peng ZY, Carter MJ, Kellum JA. Effects of hemoadsorption on cytokine removal and short-term survival in septic rats. Crit Care Med 2008; 36: 1573-1577
- 41 Kellum JA, Song M, Venkataraman R. Hemoadsorption removes tumor necrosis factor, interleukin-6, and interleukin-10, reduces nuclear factor-kappaB DNA binding, and improves short-term survival in lethal endotoxemia. Crit Care Med 2004; 32: 801-805
- 42 Trager K, Fritzler D, Fischer G. et al. Treatment of post-cardiopulmonary bypass SIRS by hemoadsorption: a case series. Int J Artif Organs 2016; 39: 141-146
- 43 Gruda MC, Ruggeberg KG, OʼSullivan P. et al. Broad adsorption of sepsis-related PAMP and DAMP molecules, mycotoxins, and cytokines from whole blood using CytoSorb(R) sorbent porous polymer beads. PloS One 2018; 13: e0191676
- 44 David S, Thamm K, Schmidt BMW. et al. Effect of extracorporeal cytokine removal on vascular barrier function in a septic shock patient. J Intensive Care 2017; 5: 12
- 45 Friesecke S, Trager K, Schittek GA. et al. International registry on the use of the CytoSorb® adsorber in ICU patients: Study protocol and preliminary results. Med Klin Intensivmed Notfmed 2017;
- 46 Kogelmann K, Jarczak D, Scheller M. et al. Hemoadsorption by CytoSorb in septic patients: a case series. Crit Care 2017; 21: 74
- 47 Schadler D, Pausch C, Heise D. et al. The effect of a novel extracorporeal cytokine hemoadsorption device on IL-6 elimination in septic patients: A randomized controlled trial. PloS One 2017; 12: e0187015
- 48 Hawchar F, Laszlo I, Oveges N. et al. Extracorporeal cytokine adsorption in septic shock: A proof of concept randomized, controlled pilot study. J Crit Care 2019; 49: 172-178
- 49 Brouwer WP, Duran S, Kuijper M. et al. Hemoadsorption with CytoSorb shows a decreased observed versus expected 28-day all-cause mortality in ICU patients with septic shock: a propensity-score-weighted retrospective study. Crit Care 2019; 23: 317
- 50 Kogelmann K, Hübner T, Schwameis F. et al. First Evaluation of a New Dynamic Scoring System Intended to Support Prescription of Adjuvant CytoSorb Hemoadsorption Therapy in Patients with Septic Shock. J Clin Med 2021; 10
- 51 Supady A, Weber E, Rieder M. et al. Cytokine adsorption in patients with severe COVID-19 pneumonia requiring extracorporeal membrane oxygenation (CYCOV): a single centre, open-label, randomised, controlled trial. Lancet Respir Med 2021; 9: 755-762
- 52 Wendel Garcia PD, Hilty MP, Held U. et al. Cytokine adsorption in severe, refractory septic shock. Intensive Care Med 2021;
- 53 Huang Z, Wang SR, Su W. et al. Removal of humoral mediators and the effect on the survival of septic patients by hemoperfusion with neutral microporous resin column. Ther Apher Dial 2010; 14: 596-602
- 54 Broman ME, Hansson F, Vincent JL. et al. Endotoxin and cytokine reducing properties of the oXiris membrane in patients with septic shock: A randomized crossover double-blind study. PloS One 2019; 14: e0220444
- 55 Knaup H, Stahl K, Schmidt BMW. et al. Early therapeutic plasma exchange in septic shock: a prospective open-label nonrandomized pilot study focusing on safety, hemodynamics, vascular barrier function, and biologic markers. Crit Care 2018; 22: 285
- 56 David S, Stahl K. To remove and replace-a role for plasma exchange in counterbalancing the host response in sepsis. Crit Care 2019; 23: 14
- 57 Stahl K, Schmidt JJ, Seeliger B. et al. Effect of therapeutic plasma exchange on endothelial activation and coagulation-related parameters in septic shock. Crit Care 2020; 24: 71
- 58 Bockmeyer CL, Claus RA, Budde U. et al. Inflammation-associated ADAMTS13 deficiency promotes formation of ultra-large von Willebrand factor. Haematologica 2008; 93: 137-140
- 59 Welte T, Dellinger RP, Ebelt H. et al. Efficacy and safety of trimodulin, a novel polyclonal antibody preparation, in patients with severe community-acquired pneumonia: a randomized, placebo-controlled, double-blind, multicenter, phase II trial (CIGMA study). Intensive Care Med 2018; 44: 438-448
- 60 Stahl K, Bikker R, Seeliger B. et al. Effect of Therapeutic Plasma Exchange on Immunoglobulin Deficiency in Early and Severe Septic Shock. J Intensive Care Med 2020;
- 61 Rimmer E, Houston BL, Kumar A. et al. The efficacy and safety of plasma exchange in patients with sepsis and septic shock: a systematic review and meta-analysis. Crit Care 2014; 18: 699
- 62 Busund R, Koukline V, Utrobin U. et al. Plasmapheresis in severe sepsis and septic shock: a prospective, randomised, controlled trial. Intensive Care Med 2002; 28: 1434-1439
- 63 David S, Bode C, Putensen C. et al. Adjuvant therapeutic plasma exchange in septic shock. Intensive Care Med 2021; 47: 352-354
- 64 Keith PD, Wells AH, Hodges J. et al. The therapeutic efficacy of adjunct therapeutic plasma exchange for septic shock with multiple organ failure: a single-center experience. Crit Care 2020; 24: 518
- 65 Schmidt JJ, Asper F, Einecke G. et al. Therapeutic plasma exchange in a tertiary care center: 185 patients undergoing 912 treatments – a one-year retrospective analysis. BMC Nephrol 2018; 19: 12
- 66 Seymour CW, Kennedy JN, Wang S. et al. Derivation, Validation, and Potential Treatment Implications of Novel Clinical Phenotypes for Sepsis. JAMA 2019; 321: 2003-2017
- 67 Rivers E, Nguyen B, Havstad S. et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 2001; 345: 1368-1377
- 68 Kumar A, Roberts D, Wood KE. et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 2006; 34: 1589-1596
- 69 Iregui M, Ward S, Sherman G. et al. Clinical importance of delays in the initiation of appropriate antibiotic treatment for ventilator-associated pneumonia. Chest 2002; 122: 262-268