Osteologie 2021; 30(04): 286-291
DOI: 10.1055/a-1561-3426
Review

Evolution and History of Osteoimmunology

Evolution und Geschichte der Osteoimmunologie
Peter Pietschmann
1   Institute for Pathophysiology and Allergy, Center for Pathophysiology, Infectiology and Immunology, Medizinische Universität Wien, Wien, Austria
,
Ursula Föger-Samwald
1   Institute for Pathophysiology and Allergy, Center for Pathophysiology, Infectiology and Immunology, Medizinische Universität Wien, Wien, Austria
,
Maria Butylina
1   Institute for Pathophysiology and Allergy, Center for Pathophysiology, Infectiology and Immunology, Medizinische Universität Wien, Wien, Austria
,
Wolfgang Sipos
2   Clinical Department for Farm Animals and Herd Management, University of Veterinary Medicine Vienna, Wien, Austria
› Author Affiliations

Abstract

This narrative review focuses on the evolution and history of osteoimmunology, which is a research field that investigates the interactions between bone and components of the immune system. Looking at the evolution of bone, bone development dates back approximately 540 million years. Osteoimmune aspects can also be found in different bone-related diseases like osteoporosis, which is a frequent age-related disease and was first recognized in 1751. Moreover, rheumatoid arthritis is known as the prototype of an osteoimmune disease, which was first clinically described in 1800. A further important component of this field are osteoclasts, a term that was coined by Kölliker in 1873. For the treatment of osteoporosis different therapeutic options are available, among which 2 antibodies (denosumab and romosozumab) were currently approved by the European Medicines Agency in 2010 and 2019, respectively, thus showing the importance of osteoimmunological research for patients’ sake.

Zusammenfassung

Dieser narrative Review befasst sich mit der Phylogenese und Medizingeschichte der Osteoimmunologie, einem Forschungsgebiet, welches die Wechselwirkungen zwischen Knochen und Komponenten des Immunsystems untersucht. Betrachtet man die Evolution des Knochens, so reicht diese rund 540 Mio. Jahre zurück. Osteoimmunologische Aspekte finden sich ebenfalls in der häufig altersbedingten Erkrankung Osteoporose, die erstmals 1751 charakterisiert wurde. Darüber hinaus wird die rheumatoide Arthritis als Prototyp einer Osteoimmunerkrankung gehandelt, welche 1800 klinisch erstmals beschrieben wurde. Ein prominenter Zelltyp im Gebiet der Osteoimmunologie sind Osteoklasten; dieser Begriff wurde 1873 durch Kölliker geprägt. Zur Behandlung der Osteoporose stehen verschiedene Therapieoptionen zur Verfügung, von denen derzeit 2 Antikörper (Denosumab und Romosozumab) von der Europäischen Arzneitmittelagentur 2010 beziehungsweise 2019 zugelassen wurden, wodurch die Bedeutung osteoimmunologischer Forschung für die Klinik deutlich wird.



Publication History

Received: 24 June 2021

Accepted: 28 July 2021

Article published online:
23 September 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Jaschke N, Sipos W, Hofbauer LC, Rachner TD, Rauner M. Skeletal Endocrinology: where evolutionary advantage meets disease. Bone Res 2021; 9: 28
  • 2 Sipos W. RANKL inhibition: preclinical data. In: Pietschmann P, ed. Principles of Osteoimmunology: Molecular Mechanisms and Clinical Applications. Wien, New York: Springer; 2012: 197-215
  • 3 Rauner M, Sipos W, Pietschmann P. Osteoimmunology. Int Arch Allergy Immunol 2007; 143: 31-48
  • 4 Rauner M, Sipos W, Thiele S, Pietschmann P. Advances in osteoimmunology: pathophysiological concepts and treatment opportunities. Int Arch Allergy Immunol 2013; 160: 114-125
  • 5 Robling AG, Bonewald LF. The osteocyte: new insights. Annu Rev Physiol 2020; 82: 485-506
  • 6 Pham CV, Pham TT, Lai TT, Trinh DC, Nguyen HVM, Ha TTM, Phuong TT, Tran LD, Winkler C, To TT. Icariin reduces bone loss in a Rankl-induced transgenic medaka (Oryzias latipes) model for osteoporosis. J Fish Biol 2021; 98: 1039-1048
  • 7 Nasoori A, Okamatsu-Ogura Y, Shimozuru M, Sashika M, Tsubota T. Hibernating bear serum hinders osteoclastogenesis in-vitro. PLoS One 2020; 15: e0238132
  • 8 Sipos W, Föger-Samwald U, Pietschmann P. Supporting Apparatus of Vertebrates: Skeleton and Bones. In: Jensen-Jarolim E, ed. Comparative Medicine: Anatomy and Physiology. Wien, Heidelberg, New York: Springer; 2013: 35-44
  • 9 Sipos W, Föger-Samwald U, Pietschmann P. Comparing two major bone pathologies in humans and companion animals: Osteoporosis and hyperparathyroidism. In: Jensen-Jarolim E, ed. Comparative Medicine: Disorders Linking Humans with Their Animals. Switzerland: Springer; 2017: 87-96
  • 10 Shah A, Clair W. Rheumatoid arthritis. In: Kasper DL, Hauser SL, Jameson JL, Faucy A, Longo DL, Loscalzo J, ed. Harrison’s principles of internal medicine. 19th edition. Vol. II. New York: McGraw Hill Education; 2015: 2136-2149
  • 11 Rothschild BM, Turner KR, DeLuca MA. Symmetrical erosive peripheral polyarthritis in the Late Archaic Period of Alabama. Science 1988; 241: 1498-1501
  • 12 Rothschild BM, Woods RJ. Symmetrical erosive disease in Archaic Indians: the origin of rheumatoid arthritis in the New World?. Semin Arthritis Rheum 1990; 19: 278-284
  • 13 Kwiecinski J, Rothschild BM. No rheumatoid arthritis in ancient Egypt: a reappraisal. Rheumatol Int 2016; 36: 891-895
  • 14 Kacki S. Erosive polyarthropathy in a Late Roman skeleton from northern France: A new case of rheumatoid arthritis from the pre-Columbian Old Word?. Int J Paleopathol 2013; 3: 59-63
  • 15 Entezami P, Fox DA, Clapham PJ, Chung KC. Historical perspective on the etiology of rheumatoid arthritis. Hand Clin 2011; 27: 1-10
  • 16 Cajas LJ, Casallas A, Medina YF. et al. Pannus and rheumatoid arthritis: Historic and pathophysiological evolution. Rev Colomb Reumatol 2019; 26: 118-128
  • 17 Bearn AG, Dixon FJ, Benacerraf B, Henry G. Kunkel 1916-1983. An appreciation of the man and his scientific contributions & a bibliography of his research papers. J Exp Med 1985; 161: 869-895
  • 18 Kölliker A. Die normale Resorption des Knochengewebes und ihre Bedeutung für die Entstehung der typischen Knochenformen. Leipzig: Verlag von F.C.W. Vogel; 1873
  • 19 Pommer G. Über die lacunäre Resorption im erkrankten Knochen. Sitzungsberichte der k.k. Akademie der Wissenschaften 83. Band. III. Abt. Jänner-Heft 1881; S 17-140
  • 20 Arey LB. The origin, growth and fate of osteoclasts and their relation to bone resorption. Amer J Anat 1919; 26: 315-346
  • 21 Mallory FB. Giant cell sarcoma. J Med Res 1911; 24: 463-468
  • 22 Hancox NM. On the occurrence in vitro of cells resembling osteoclasts. J Physiol 1946; 105: 66-71
  • 23 Chambers TJ. The birth of the osteoclast. Ann NY Acad Sci 2010; 1192: 19-26 PMID: 16991709
  • 24 Ortner DJ. What skeletons tell us. The story of human paleopathology. Virchows Arch 2011; 459: 247-254
  • 25 Fraberger S, Dockner M, Winter E, Pretterklieber M, Weber GW, Teschler-Nicola M, Pietschmann P. Micro-CT evaluation of historical human skulls presenting signs of syphilitic infection. Wien Klin Wochenschr 2021; 133: 602-609
  • 26 Horton JE, Raisz LG, Simmons HA, Oppenheim J, Stephen E, Mergenhagen E. Bone resorbing activity in supernatant fluid from cultured human peripheral blood leukocytes. Science 1972; 177: 793-795
  • 27 Gowen M, Wood DD, Ihrie EJ, McGuire MKB, Russel GG. An interleukin 1 like factor stimulates bone resorption in vitro. Nature 1983; 306: 378-380
  • 28 Watrous D, Andrews BS. The metabolism and immunology of bone. Sem Arthr Rheum 1989; 19: 45-65
  • 29 Lösser L, Rauner M. Ein Überblick über die Osteoimmunologie – Osteoimmunology. Arthtritis und Rheuma 2021; 41: 11-19
  • 30 Sipos W, Pietschmann P, Rauner M. Strategies for novel therapeutic approaches targeting cytokines and signaling pathways of osteoclasto- and osteoblastogenesis in the fight against immune-mediated bone and joint diseases. Current Medicinal Chemistry 2008; 15: 127-136
  • 31 Föger-Samwald U, Dovjak P, Azizi-Semrad U, Kerschan-Schindl K, Pietschmann P. Osteoporosis: Pathophysiology and therapeutic options. EXCLI J. 2020; 19: 1017-1037
  • 32 Arron JR, Choi Y. Bone versus immune system. Nature 2000; 408: 535-536
  • 33 Takayanagi H, Ogasawara K, Hida S, Chiba T, Murata S, Sato K, Takaoka A, Yokochi T, Oda H, Tanaka K, Nakamura K, Taniguchi T. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 2000; 408: 600-605
  • 34 Tsukasaki M, Takayanagi H. Osteoimmunology: evolving concepts in bone-immune interactions in health and disease. Nat Rev Immunol 2019; 19: 626-642
  • 35 Ruiz C, Pérez E, Vallecillo-Capilla M, Reyes-Botella C. Phagocytosis and allogeneic T cell stimulation by cultured human osteoblast-like cells. Cell Physiol Biochem 2003; 13: 309-314
  • 36 Metzger CE, Gong S, Aceves M, Bloomfield SA, Hook MA. Osteocytes reflect a pro-inflammatory state following spinal cord injury in a rodent model. Bone 2019; 120: 465-475
  • 37 Feldmann M. Development of anti-TNF therapy for rheumatoid arthritis. Nat Rev Immunol 2002; 2: 364-371
  • 38 Zerbini CAF, Clark P, Mendez-Sanchez L, Pereira RMR, Messina OD, Uña CR, Adachi JD, Lems WF, Cooper C, Lane NE. IOF Chronic Inflammation and Bone Structure (CIBS) Working Group. Osteoporos Int 2017; 28: 429-446
  • 39 Duverney JG. 1751. Traité des maladies des os. De Bure, Paris. Biologic therapies and bone loss in rheumatoid arthritis.
  • 40 Lobstein J. 1820. Traité d’anatomie pathologique. Livre II. F.G. Levrault; Strasbourg:
  • 41 Albright F, Smith PH, Richardson AM. Postmenopausal osteoporosis. JAMA 1941; 116: 2465-2474
  • 42 Clarke BL, Khosla S. Physiology of bone loss. Radiologic clinics of North America 2010; 48: 483-495
  • 43 Pacifici R, Rifas L, Mccracken R, Avioli LV. The role of interleukin-1 in postmenopausal bone loss. Exp Gerontol 1990; 25: 309-316
  • 44 Zhao R, Wang X, Feng F. Upregulated Cellular Expression of IL-17 by CD4+T-Cells in Osteoporotic Postmenopausal Women. Ann Nutr Metab 2016; 68: 113-118
  • 45 Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 2000; 908: 244-254
  • 46 Cauley JA, Danielson ME, Boudreau RM, Forrest KY, Zmuda JM, Pahor M, Tylavsky FA, Cummings SR, Harris TB, Newman AB. Health ABC Study. Inflammatory markers and incident fracture risk in older men and women: the Health Aging and Body Composition Study. J Bone Miner Res 2007; 22: 1088-1095
  • 47 Ding C, Parameswaran V, Udayan R, Burgess J, Jones G. Circulating levels of inflammatory markers predict change in bone mineral density and resorption in older adults: a longitudinal study. The Journal of clinical endocrinology and metabolism 2008; 93: 1952-1958
  • 48 Ganesan K, Teklehaimanot S, Tran TH, Asuncion M, Norris K. Relationship of C-reactive protein and bone mineral density in community-dwelling elderly females. J Natl Med Assoc 2005; 97: 329-333 PMID: 15779496
  • 49 Nakamura K, Saito T, Kobayashi R, Oshiki R, Oyama M, Nishiwaki T, Nashimoto M, Tsuchiya Y. C-reactive protein predicts incident fracture in community-dwelling elderly Japanese women: the Muramatsu study. Osteoporos Int 2011; 22: 2145-2150
  • 50 Pasco JA, Kotowicz MA, Henry MJ, Nicholson GC, Spilsbury HJ, Box JD, Schneider HG. High-sensitivity C-reactive protein and fracture risk in elderly women. JAMA 2006; 296: 1353-1355
  • 51 Pietschmann P, Mechtcheriakova D, Meshcheryakova A, Föger-Samwald U, Ellinger I. Immunology of Osteoporosis: A Mini-Review. Gerontology 2016; 62: 128-137