RSS-Feed abonnieren
DOI: 10.1055/a-1628-7586
A Straightforward, Purification-Free Procedure for the Synthesis of Ando and Still–Gennari Type Phosphonates
The research was financed by the Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences (Polska Akademia Nauk).

Abstract
Z-Selective Still–Gennari and Ando modifications of the typically E-selective Horner–Wadsworth–Emmons reaction are highly valuable synthetic tools in organic chemistry. These procedures are based on application of bis(2,2,2-trifluoroethyl) phosphonates or diaryl phosphonates, respectively, for the olefination of carbonyl groups. In our research, we present an improved, straightforward, purification-free procedure for the synthesis of these reagents. The key step of our procedure is the reaction of phosphonic dichlorides with the appropriate sodium alkoxides, which results in 52–97% isolated yields of the desired products on a gram scale. The whole three-step process is performed in one pot. Most importantly, the product is obtained in over 95% purity after simple extraction, avoiding column chromatography and distillation. Moreover, we present the synthesis of a novel Still–Gennari type reagent, bis(1,1,1,3,3,3-hexafluoroisopropyl) phosphonates, which may exhibit improved Z-selectivity in Still–Gennari olefinations.
Key words
Horner–Wadsworth–Emmons (HWE) reaction - Still–Gennari olefination - Ando olefination - stereoselective synthesis - Wittig reaction - phosphonates - alkenes - C=C bond formationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1628-7586.
- Supporting Information
Publikationsverlauf
Eingereicht: 01. Juli 2021
Angenommen nach Revision: 01. September 2021
Accepted Manuscript online:
01. September 2021
Artikel online veröffentlicht:
13. Oktober 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Kobayashi K, Tanaka KIII, Kogen H. Tetrahedron Lett. 2018; 59: 568
- 1b Bisceglia J. Á, Orelli LR. Curr. Org. Chem. 2012; 16: 2206
- 1c Bisceglia J. Á, Orelli LR. Curr. Org. Chem. 2015; 19: 744
- 1d Maryanoff BE, Reitz AB. Chem. Rev. 1989; 89: 863
- 1e Horner L, Hoffmann HM. R, Wippel HG. Chem. Ber. 1958; 91: 61
- 1f Horner L, Hoffmann HM. R, Wippel HG, Klahre G. Chem. Ber. 1959; 92: 2499
- 1g Wadsworth WS, Emmons WD. J. Am. Chem. Soc. 1961; 83: 1733
- 1h Roman D, Sauer M, Beemelmanns C. Synthesis 2021; 53: 2713
- 2 Nagaoka H, Kishi Y. Tetrahedron 1981; 37: 3873
- 3a Breuer E, Bannet DM. Tetrahedron Lett. 1977; 1141
- 3b Patois C, Savignac P. Tetrahedron Lett. 1991; 32: 1317
- 4 Still WC, Gennari C. Tetrahedron Lett. 1983; 24: 4405
- 5a Ando K. Tetrahedron Lett. 1995; 36: 4105
- 5b Ando K. J. Org. Chem. 1997; 62: 1934
- 5c Ando K. J. Org. Chem. 1998; 63: 8411
- 6 Janicki I, Kiełbasiński P. Adv. Synth. Catal. 2020; 362: 2552
- 7a Motoyoshiya J, Kusaura T, Kokin K, Yokoya S, Takaguchi Y, Narita S, Aoyama H. Tetrahedron 2001; 57: 1715
- 7b Ando K. J. Org. Chem. 1999; 64: 6815
- 8a Messik F, Oberthür M. Synthesis 2013; 45: 167
- 8b Molnár K, Takács L, Kádar M, Kardos Z, Faigl F. Synthesis 2015; 47: 1085
- 8c Sano S, Matsumoto T, Toguchi M, Nakao M. Synlett 2018; 29: 1461
- 9a da Silva Prado V, Burtoloso AC. B. Synthesis 2010; 361
- 9b Yu W, Su M, Jin Z. Tetrahedron Lett. 1999; 40: 6725
- 9c Zhang TY, O’Toole JC, Dunigan JM. Tetrahedron Lett. 1998; 39: 1461
- 9d Ando K. Synlett 2001; 1272
- 9e Kojima S, Hidaka T, Ohba Y, Ohkata K. Phosphorus, Sulfur Silicon Relat. Elem. 2002; 177: 729
- 9f Fortin S, Dupont F, Deslongchamps P. J. Org. Chem. 2002; 67: 5437
- 9g Kokin K, Tsuboi S, Motoyoshiya J, Hayashi S. Synthesis 1996; 637
- 9h Midura WH, Ewas AM. M, Mikołajczyk M. Phosphorus, Sulfur Silicon Relat. Elem. 2016; 191: 535
- 9i Davis AA, Rosén JJ, Kiddle JJ. Tetrahedron Lett. 1998; 39: 6263
- 9j Janicki I, Kiełbasiński P. Synthesis 2018; 50: 4140