RSS-Feed abonnieren
DOI: 10.1055/a-1650-9428
Bestrahlungsplanung und Dosisverifikation für die kombinierte interne und externe Strahlentherapie (CIERT)
Treatment Planning and Dose Verification for Combined Internal and External Radiotherapy (CIERT)
Zusammenfassung
Ziel Die kombinierte interne und externe Radiotherapie (CIERT) mittels offenen Radionukliden und externer Bestrahlung ermöglicht die Ausnutzung der Vorteile beider Bestrahlungsansätze. Hierzu zählen steile Dosisgradienten und eine geringe Normalgewebstoxizität durch die Bestrahlung mit offenen Radionukliden sowie die homogene Dosisdeposition innerhalb des Tumors durch externe Bestrahlung. Für eine kombinierte Bestrahlungsplanung soll eine Infrastruktur zur Berücksichtigung der Dosisbeiträge aus beiden Modalitäten geschaffen werden. Anschließend soll die physikalische Verifikation der Dosisverteilung messtechnisch mittels OSL-Detektoren erfolgen.
Methode Die interne Bestrahlung erfolgte durch Re-188 in einem Zylinderphantom mit drei zylindrischen Einsätzen. Nach Akquisition von SPECT-Aufnahmen wurde die interne Dosis mittels der Software STRATOS berechnet und als DICOM-RT-Datensatz exportiert. Mittels der Planungssoftware Pinnacle wurde diese Dosisverteilung als Vorbestrahlung berücksichtigt und die externe Bestrahlung mit 6 MV Photonen geplant. Die Messung der Dosisbeiträge erfolgte mittels OSL-Detektoren aus Berylliumoxid für die kombinierte Bestrahlung und für beide Modalitäten getrennt.
Ergebnisse Die geplante Kombinationsbestrahlung mit 1 Gy, 2 Gy und 4 Gy konnte innerhalb der Messunsicherheit der Detektoren sowohl für die getrennten als auch die kombinierte interne und externe Bestrahlung verifiziert werden. Das mittlere Ansprechvermögen der Detektoren bei der internen Bestrahlung mit Re-188 betrug dabei (88,6 ± 2,4) % gegenüber der Kalibrierung mit 200 kV Röntgenstrahlen, wogegen das Ansprechvermögen für 6 MV Photonen bei (146,0 ± 4,9) % lag.
Schlussfolgerung Es wurde ein Ablaufschema für die Bestrahlungsplanung bei der kombinierten internen und externen Radiotherapie entwickelt und erfolgreich getestet. Messtechnisch konnte die Dosisverifikation mittels OSL-Detektoren erfolgreich umgesetzt werden, so dass die physikalisch-technischen Grundlagen für die Dosimetrie bei Kombinationsbestrahlungen gelegt sind.
Abstract
Aim The combined internal and external radiotherapy (CIERT) take advantage of the benefits from radionuclide therapy and external beam irradiation. These include steep dose gradients and a low toxicity to normal tissue due to the use of unsealed radioisotopes as well as homogeneous dose distribution within the tumor due to external beam irradiation. For a combined irradiation planning, an infrastructure has to be developed that takes into account the dose contributions from both modalities. A physical verification of the absorbed dose distribution should follow by measurements using OSL detectors.
Method Internal irradiation was performed using Re-188 in a cylindrical phantom with three inserts. SPECT images were acquired to calculate the internal dose using the software STRATOS. The dose distribution was exported as DICOM-RT data and imported in the software Pinnacle. Based on the internal dose distribution the external irradiation using 6 MV photons was planned. The dose contributions of both modalities separately as well as for combined irradiation was measured using OSL detectors made out of Beryllium oxide.
Results The planed doses of combined irradiation (1 Gy, 2 Gy, 4 Gy) could be verified within the uncertainty of the detectors. The mean energy response to Re-188 was (88.6 ± 2.4) % with respect to the calibration with 200 kV X-ray irradiation. The energy response to 6 MV photons was (146.0 ± 4.9) %.
Conclusion A workflow for the treatment planning of combined internal and external radiotherapy has been developed and tested. Measurements verified the calculated doses. Therefore, the physical and technical basis for the dosimetry of combined irradiation were worked out.
Publikationsverlauf
Eingereicht: 19. Januar 2021
Angenommen nach Revision: 14. September 2021
Artikel online veröffentlicht:
29. November 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Dietrich A, Koi L, Zophel K. et al. Improving external beam radiotherapy by combination with internal irradiation. Br J Radiol 2015; 88: 20150042
- 2 Andreeff M, Sommer D, Freudenberg R. et al. BeO-OSL detectors for dose measurements in cell cultures. Nuklearmedizin 2009; 48 (06) 227-232
- 3 Sommer M, Freudenberg R, Henniger J. New aspects of a BeO-based optically stimulated luminescence dosimeter. Radiat Meas 2007; 42 (04) 617-620
- 4 Buchmann I, Bunjes D, Kotzerke J. et al. Myeloablative radioimmunotherapy with Re-188-anti-CD66-antibody for conditioning of high-risk leukemia patients prior to stem cell transplantation: biodistribution, biokinetics and immediate toxicities. Cancer Biother Radiopharm 2002; 17 (02) 151-163
- 5 Bunjes D, Buchmann I, Duncker C. et al. Rhenium 188-labeled anti-CD66 (a, b, c, e) monoclonal antibody to intensify the conditioning regimen prior to stem cell transplantation for patients with high-risk acute myeloid leukemia or myelodysplastic syndrome: results of a phase I-II study. Blood 2001; 98 (03) 565-572
- 6 Kotzerke J, Rentschler M, Glatting G. et al. Dosimetry fundamentals of endovascular therapy using Re-188 for the prevention of restenosis after angioplasty. Nuklearmedizin 1998; 37 (02) 68-72
- 7 Freudenberg R, Andreeff M, Kotzerke J. P40: Monte-Carlo-Simulationen zur Dosisverteilung der SIRT-Radionuklide Y-90, Ho-188 und Re-188. Nuklearmedizin 2017; 56 (02) A70
- 8 Freudenberg R, Andreeff M, Oehme L. et al. Dosimetry of cell-monolayers in multiwell plates. Nuklearmedizin 2009; 48 (03) 120-126
- 9 Kotzerke J, Runge R, Gotze P. et al. Radio- and photosensitization of plasmid DNA by DNA binding ligand propidium iodide: Investigation of Auger electron induction and detection of Cherenkov-emission. Nuklearmedizin 2019; 58 (04) 319-327
- 10 Maucksch U, Runge R, Oehme L. et al. Radiotoxicity of alpha particles versus high and low energy electrons in hypoxic cancer cells. Nuklearmedizin 2018; 57 (02) 56-63
- 11 Runge R, Arlt J, Oehme L. et al. Comparison of clonogenic cell survival and DNA damage induced by (188)Re and X-rays in rat thyroid cells. Nuklearmedizin 2017; 56 (01) 47-54
- 12 Berker Y, Goedicke A, Kemerink GJ. et al. Activity quantification combining conjugate-view planar scintigraphies and SPECT/CT data for patient-specific 3-D dosimetry in radionuclide therapy. Eur J Nucl Med Mol Imaging 2011; 38 (12) 2173-2185
- 13 Grassi E, Fioroni F, Ferri V. et al. Quantitative comparison between the commercial software STRATOS((R)) by Philips and a homemade software for voxel-dosimetry in radiopeptide therapy. Phys Med 2015; 31 (01) 72-79
- 14 Sommer M, Henniger J. Investigation of a BeO-based optically stimulated luminescence dosemeter. Radiat Prot Dosimetry 2006; 119: 394-397
- 15 Stabin M, Xu XG. Basic Principles in the Radiation Dosimetry of Nuclear Medicine. Semin Nucl Med 2014; 44 (03) 162-171
- 16 Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: The Second-Generation Personal Computer Software for Internal Dose Assessment in Nuclear Medicine. J Nucl Med 2005; 46 (06) 1023
- 17 Jahn A, Sommer M, Ullrich W. et al. The BeOmax system – Dosimetry using OSL of BeO for several applications. Radiat Meas 2013; 56: 324-327
- 18 Dietrich A, Andreeff M, Koi L. et al. Radiotherapy enhances uptake and efficacy of 90Y-cetuximab: A preclinical trial. Radiother Oncol 2021; 155: 285-292
- 19 Koi L, Bergmann R, Bruchner K. et al. Radiolabeled anti-EGFR-antibody improves local tumor control after external beam radiotherapy and offers theragnostic potential. Radiother Oncol 2014; 110 (02) 362-369
- 20 Barendswaard EC, O'Donoghue JA, Larson SM. et al. 131I radioimmunotherapy and fractionated external beam radiotherapy: comparative effectiveness in a human tumor xenograft. J Nucl Med 1999; 40 (10) 1764-1768
- 21 Buchegger F, Rojas A, Delaloye AB. et al. Combined radioimmunotherapy and radiotherapy of human colon carcinoma grafted in nude mice. Cancer Res 1995; 55 (01) 83-89
- 22 Sun LQ, Vogel CA, Mirimanoff RO. et al. Timing effects of combined radioimmunotherapy and radiotherapy on a human solid tumor in nude mice. Cancer Res 1997; 57 (07) 1312-1319
- 23 Vogel CA, Galmiche MC, Buchegger F. Radioimmunotherapy and fractionated radiotherapy of human colon cancer liver metastases in nude mice. Cancer Res 1997; 57 (03) 447-453
- 24 Israel I, Blass G, Reiners C. et al. Validation of an amino-acid-based radionuclide therapy plus external beam radiotherapy in heterotopic glioblastoma models. Nucl Med Biol 2011; 38 (04) 451-460
- 25 Oehme L, Bartzsch T, Maucksch U. et al. Combined internal-external radiotherapy (CIERT) in a cell model. Nuklearmedizin 2018; 57 (03) 108-116
- 26 May MS, Brand M, Wuest W. et al. Induction and repair of DNA double-strand breaks in blood lymphocytes of patients undergoing (1)(8)F-FDG PET/CT examinations. Eur J Nucl Med Mol Imaging 2012; 39 (11) 1712-1719
- 27 Kreissl MC, Hanscheid H, Lohr M. et al. Combination of peptide receptor radionuclide therapy with fractionated external beam radiotherapy for treatment of advanced symptomatic meningioma. Radiat Oncol 2012; 7: 99
- 28 Wang TH, Huang PI, Hu YW. et al. Combined Yttrium-90 microsphere selective internal radiation therapy and external beam radiotherapy in patients with hepatocellular carcinoma: From clinical aspects to dosimetry. PLoS One 2018; 13 (01) e0190098
- 29 Bodey RK, Flux GD, Evans PM. Combining dosimetry for targeted radionuclide and external beam therapies using the biologically effective dose. Cancer Biother Radiopharm 2003; 18 (01) 89-97
- 30 Cremonesi M, Ferrari M, Botta F. et al. Planning combined treatments of external beam radiation therapy and molecular radiotherapy. Cancer Biother Radiopharm 2014; 29 (06) 227-237
- 31 Ferrari ME, Cremonesi M, Di Dia A. et al. 3D dosimetry in patients with early breast cancer undergoing Intraoperative Avidination for Radionuclide Therapy (IART) combined with external beam radiation therapy. Eur J Nucl Med Mol Imaging 2012; 39 (11) 1702-1711
- 32 Hobbs RF, McNutt T, Baechler S. et al. A treatment planning method for sequentially combining radiopharmaceutical therapy and external radiation therapy. Int J Radiat Oncol Biol Phys 2011; 80 (04) 1256-1262
- 33 Fowler JF. The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol 1989; 62: 679-694
- 34 Sarigul N, Surucu M, Aydogan B. Energy Response Factor of Beo Dosemeter Chips: A Monte Carlo Simulation and General Cavity Theory Study. Radiat Prot Dosimetry 2019; 185 (03) 303-309
- 35 Calvi LM, Frisch BJ, Kingsley PD. et al. Acute and late effects of combined internal and external radiation exposures on the hematopoietic system. Int J Radiat Biol 2019; 1-15