Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2022; 54(04): 1108-1114
DOI: 10.1055/a-1653-2685
DOI: 10.1055/a-1653-2685
feature
SN2′ Defluorinative Allylation of Trifluoromethylalkenes with Allylsilanes
This work was supported by the National Natural Science Foundation of China (21801131 & 21871138), the ‘Thousand Young Talents Program’ of China, and the ‘Jiangsu Specially-Appointed Professor Plan’.

Abstract
An SN2′ defluorinative allylation of trifluoromethylalkenes with readily available allylsilanes to access homoallyl gem-difluoroalkenes is reported. The reaction is triggered by a catalytic amount of TBAF, with the extruded fluoride in the reaction serving as a sustainable activator for organosilanes. The high efficiency, good functional group tolerance, and mild reaction conditions underline the potential of this method in synthetic chemistry.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1653-2685.
- Supporting Information
Publication History
Received: 31 August 2021
Accepted after revision: 24 September 2021
Accepted Manuscript online:
24 September 2021
Article published online:
11 November 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Lim MH, Kim HO, Moon HR, Chun MW, Jeong LS. Org. Lett. 2002; 4: 529
- 1b Pan Y, Qiu J, Silverman RB. J. Med. Chem. 2003; 46: 5292
- 1c Fujii K, Nakamoto Y, Hatano K, Kanetsuki Y. JP Patent 2006016331 A, 2006
- 2a Ma Q, Wang Y, Tsui GC. Angew. Chem. Int. Ed. 2020; 59: 11293
- 2b Lu X, Wang Y, Zhang B, Pi J.-J, Wang X.-W, Gong T.-J, Xiao B, Fu Y. J. Am. Chem. Soc. 2017; 139: 12632
- 2c Sakaguchi H, Uetake Y, Ohashi M, Niwa T, Ogoshi S, Hosoya T. J. Am. Chem. Soc. 2017; 139: 12855
- 3a Yuan K, Feoktistova T, Cheong PH.-Y, Altman RA. Chem. Sci. 2021; 12: 1363
- 3b Liu C, Zhu C, Cai Y, Jiang H. Angew. Chem. Int. Ed. 2021; 60: 12038
- 3c Zubkov MO, Kosobokov MD, Levin VV, Kokorekin VA, Korlyukov AA, Hu J, Dilman AD. Chem. Sci. 2020; 11: 737
- 3d Zhu C, Song S, Zhou L, Wang D.-X, Feng C, Loh T.-P. Chem. Commun. 2017; 53: 9482
- 4a Liu C, Zeng H, Zhu C, Jiang H. Chem. Commun. 2020; 56: 10442
- 4b Lin TY, Pan Z, Tu Y, Zhu S, Wu H.-H, Liu Y, Li Z, Zhang J. Angew. Chem. Int. Ed. 2020; 59: 22957
- 4c Liu C, Zhu C, Cai Y, Yang Z, Zeng H, Chen F, Jiang H. Chem. Eur. J. 2020; 26: 1953
- 5 Fuqua SA, Duncan WG, Silverstein RM. Tetrahedron Lett. 1964; 1461
- 6a Zhang X, Cao S. Tetrahedron Lett. 2017; 58: 375
- 6b Wang S, Cheng B.-Y, Sršen M, König H. J. Am. Chem. Soc. 2020; 142: 7524
- 7 Fujita T, Fuchibe K, Ichikawa J. Angew. Chem. Int. Ed. 2019; 58: 390
- 8a Bégué J.-P, Bonnet-Delpon D, Rock MH. Tetrahedron Lett. 1995; 36: 5003
- 8b Fuchikami T, Shibata Y, Suzuki Y. Tetrahedron Lett. 1986; 27: 3173
- 9a Jang YJ, Rose D, Mirabi B, Lautens M. Angew. Chem. Int. Ed. 2018; 57: 16147
- 9b Zhang C, Lin Z, Zhu Y, Wang C. J. Am. Chem. Soc. 2021; 143: 11602
- 9c Lan Y, Yang F, Wang C. ACS Catal. 2018; 8: 9245
- 9d Lin Z, Lan Y, Wang C. ACS Catal. 2019; 9: 775
- 9e Lu X, Wang X.-X, Gong T.-J, Pi J.-J, He S.-J, Fu Y. Chem. Sci. 2019; 10: 809
- 9f Kojima R, Akiyama S, Ito H. Angew. Chem. Int. Ed. 2018; 57: 7196
- 9g Gao P, Yuan C, Zhao Y, Shi Z. Chem 2018; 4: 2201
- 10a Lang SB, Wiles RJ, Kelly CB, Molander GA. Angew. Chem. Int. Ed. 2017; 56: 15073
- 10b Yue W.-J, Day CS, Martin R. J. Am. Chem. Soc. 2021; 143: 6395
- 10c Xia P.-J, Song D, Ye Z.-P, Hu Y.-Z, Xiao J.-A, Xiang H.-Y, Chen X.-Q, Yang H. Angew. Chem. Int. Ed. 2020; 59: 6706
- 10d Xu W, Jiang H, Leng J, Ong HW, Wu J. Angew. Chem. Int. Ed. 2020; 59: 4009
- 10e Guo Y.-Q, Wang R, Song H, Liu Y, Wang Q. Org. Lett. 2020; 22: 709
- 11 Gao X.-T, Zhang Z, Wang X, Tian J.-S, Xie S.-L, Zhou F, Zhou J. Chem. Sci. 2020; 11: 10414
- 12a Bao W, Kossen H, Schneider U. J. Am. Chem. Soc. 2017; 139: 4362
- 12b García-Ruiz C, Chen JL.-Y, Sandford C, Feeney K, Lorenzo P, Berionni G, Mayr H, Aggarwal VK. J. Am. Chem. Soc. 2017; 139: 15324
- 12c Luo C, Bandar JS. J. Am. Chem. Soc. 2019; 141: 14120
- 12d Mizuno K, Ikeda M, Otsuji Y. Tetrahedron Lett. 1985; 26: 461
- 13 Zhu C, Sun M.-M, Chen K, Feng C. Angew. Chem. Int. Ed. 2021; 60: 20237
- 14a Tian P, Feng C, Loh T.-P. Nat. Commun. 2015; 6: 7472
- 14b Zhou L, Zhu C, Bi P, Feng C. Chem. Sci. 2019; 10: 1114
- 14c Zhu C, Zhang Y.-F, Liu Z.-Y, Zhou L, Liu H, Feng C. Chem. Sci. 2019; 10: 6721
- 14d Tang L, Liu Z.-Y, She W, Feng C. Chem. Sci. 2019; 10: 8701
- 14e Zhu C, Liu Z.-Y, Tang L, Zhang H, Zhang Y.-F, Walsh PJ, Feng C. Nat. Commun. 2020; 11: 4860
- 15 Kawai M, Onaka M, Izumi Y. Chem. Lett. 1986; 15: 381
For selected examples, see:
For selected examples, see:
For a review, see:
For recent examples, see:
For a review, see:
For recent examples, see: