Synlett, Inhaltsverzeichnis Synlett 2022; 33(18): 1868-1872DOI: 10.1055/a-1679-7161 cluster Development and Applications of Novel Ligands/Catalysts and Mechanistic Studies on Catalysis Synthesis of Novel Chiral Phenanthroline Ligands and a Copper Complex Jingjing Tang , Jian Li , Xueyan Yang∗ , Zhipeng Zhang ∗ Artikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Abstract A novel class of chiral multidentate ligands has been designed and synthesized from the important classic ligand 1,10-phenanthroline and amino acids. The ligands were proven to be able to coordinate with copper(2+) ion by the formation of a novel chiral copper complex, the structure of which was determined by single-crystal X-ray diffraction. Key words Key wordsphenanthroline - amino acids - ligands - asymmetric synthesis - copper complex Volltext Referenzen References and Notes 1a Summers LA. Adv. Heterocycl. Chem. 1978; 22: 1 1b Sammes PG, Yahioglu G. Chem. Soc. Rev. 1994; 23: 327 1c Luman CR, Castellano FN. Comprehensive Coordination Chemistry II, Vol. 1. McCleverty JA, Meyer TJ. Elsevier; Oxford: 2004. Chap. 1.1, 25 2a Lavie-Cambot A, Cantuel M, Leydet Y, Jonusauskas G, Bassani DM, McClenaghan ND. Coord. Chem. Rev. 2008; 252: 2572 2b Bencini A, Lippolis V. Coord. Chem. Rev. 2010; 254: 2096 3a Sigman DS, Mazunder A, Perrin DM. Chem. Rev. 1993; 93: 2295 3b Pogozelski WK, Tullius TD. Chem. Rev. 1998; 98: 1089 3c Ji L.-N, Zou X.-H, Liu J.-G. Coord. Chem. Rev. 2001; 216: 513 3d Sigman DS, Landgraf R, Perrin DM, Pearson L. Metal Ions in Biological Systems, Vol. 33. Sigel A, Sigel H. Dekker; New York: 1996. Chap. 16, 485 4a Amabilino DB, Stoddart JF. Chem. Rev. 1995; 95: 2725 4b Raymo FM, Stoddart JF. Chem. Rev. 1999; 99: 1643 4c Armaroli N. Chem. Soc. Rev. 2001; 30: 113 4d Saha ML, Neogi S, Schmittel M. Dalton Trans. 2014; 43: 3815 For selected examples of nonasymmetric reactions catalyzed by metal/phen-based ligands: 5a Carney JM, Donoghue PJ, Wuest WM, Wiest O, Helquist P. Org. Lett. 2008; 10: 3903 5b Shirakawa E, Ito K.-i, Higashino T, Hayashi T. J. Am. Chem. Soc. 2010; 132: 15537 5c Shibahara F, Yamaguchi E, Murai T. Chem. Commun. 2010; 46: 2471 5d Peng J, Kishi Y. Org. Lett. 2012; 14: 86 5e Limberger J, Leal BC, Back DF, Dupont J, Monteiro AL. Adv. Synth. Catal. 2012; 354: 1429 5f Yu P, Zhang G, Chen F, Cheng J. Tetrahedron Lett. 2012; 53: 4588 5g Williams TJ, Fairlamb IJ. S. Tetrahedron Lett. 2013; 54: 2906 5h Cho SH, Hartwig JF. J. Am. Chem. Soc. 2013; 135: 8157 5i Li X, Yang F, Wu Y, Wu Y. Org. Lett. 2014; 16: 992 5j Yamauchi T, Shibahara F, Murai T. J. Org. Chem. 2014; 79: 7185 5k Yamauchi T, Shibahara F, Murai T. Org. Lett. 2015; 17: 5392 5l Cheng C, Hartwig JF. J. Am. Chem. Soc. 2015; 137: 592 5m Egger L, Guénée L, Bürgi T, Lacour J. Adv. Synth. Catal. 2017; 359: 2918 5n Shevlin M, Guan X, Driver TG. ACS Catal. 2017; 7: 5518 5o Liu T, Myers MC, Yu J.-Q. Angew. Chem. Int. Ed. 2017; 56: 306 5p Wang F, Wang D, Zhou Y, Liang L, Lu R, Chen P, Lin Z, Liu G. Angew. Chem. Int. Ed. 2018; 57: 7140 5q Shan X.-H, Yang B, Zheng H.-X, Qu J.-P, Kang Y.-B. Org. Lett. 2018; 20: 7898 5r Yamamoto K, Li JK, Garber JA. O, Rolfes JD, Boursalian GB, Borghs JC, Genicot C, Jacq J, van Gastel M, Neese F, Ritter T. Nature 2018; 554: 511 5s Zhang H, Zhou Y, Tian P, Jiang C. Org. Lett. 2019; 21: 1921 5t Lo PK. T, Chen Y, Willis MC. ACS Catal. 2019; 9: 10668 5u Drapeau MP, Bahri J, Lichte D, Gooβen LJ. Angew. Chem. Int. Ed. 2019; 58: 892 5v Karmel C, Chen Z, Hartwig JF. J. Am. Chem. Soc. 2019; 141: 7063 5w Mondal R, Sinha S, Das S, Chakraborty G, Paul ND. Adv. Synth. Catal. 2020; 362: 594 5x Zhu L, Li J, Yang J, Au-Yeung HY. Chem. Sci. 2020; 11: 13008 5y Cho YH, Kim JH, An H, Ahn K.-H, Kang EJ. Adv. Synth. Catal. 2020; 362: 2183 5z Larsen MA, Oeschger RJ, Hartwig JF. ACS Catal. 2020; 10: 3415 5aa Sarkar A, Formenti D, Ferretti F, Kreyenschulte C, Bartling S, Junge K, Beller M, Ragaini F. Chem. Sci. 2020; 11: 6217 5ab DeMent PM, Liu C, Wakpal J, Schaugaard RN, Schlegel HB, Nguyen HM. ACS Catal. 2021; 11: 2108 For selected examples of enantioselective reactions catalyzed by metal/phen-based chiral ligands, see: 6a Schoffers E. Eur. J. Org. Chem. 2003; 1145 6b Chelucci G, Thummel RP. Chem. Rev. 2002; 102: 3129 6c Gladiali S, Chelucci G, Chessa G, Delogu G, Soccolini F. J. Organomet. Chem. 1987; 327: C15 6d Gladiali S, Pinna L, Delogu G, Graf E, Brunner H. Tetrahedron: Asymmetry 1990; 1: 937 6e Gladiali S, Pinna L, Delogu G, De Martin S, Zassinovich G, Mestroni G. Tetrahedron: Asymmetry 1990; 1: 635 6f Kandzia C, Steckhan E, Knoch F. Tetrahedron: Asymmetry 1993; 4: 39 6g Peña-Cabrera E, Norrby P.-O, Sjögren M, Vitagliano A, De Felice V, Oslob J, Ishii S, O’Neill D, Åkermark B, Helquist P. J. Am. Chem. Soc. 1996; 118: 4299 6h Chelucci G, Pinna GA, Saba A, Sanna G. J. Mol. Catal. A: Chem. 2000; 159: 423 6i Gladiali S, Chelucci G, Mudadu MS, Gastaut M.-A, Thummel RP. J. Org. Chem. 2001; 66: 400 6j Chelucci G, Iuliano A, Muroni D, Saba A. J. Mol. Catal. A: Chem. 2003; 191: 29 6k Puglisi A, Benaglia M, Annunziata R, Bologna A. Tetrahedron Lett. 2003; 44: 2947 6l Nishikawa Y, Yamamoto H. J. Am. Chem. Soc. 2011; 133: 8432 6m Naganawa Y, Namba T, Aoyama T, Shoji K, Nishiyama H. Chem. Commun. 2014; 50: 13224 6n Naganawa Y, Komatsu H, Nishiyama H. Chem. Lett. 2015; 44: 1652 6o Naganawa Y, Namba T, Kawagishi M, Nishiyama H. Chem. Eur. J. 2015; 21: 9319 6p Naganawa Y, Aoyama T, Nishiyama H. Org. Biomol. Chem. 2015; 13: 11499 6q Naganawa Y, Abe H, Nishiyama H. Synlett 2016; 27: 1973 6r Naganawa Y, Nishiyama H. Chem. Rec. 2016; 16: 2573 6s Naganawa Y, Aoyama T, Kato K, Nishiyama H. ChemistrySelect 2016; 1: 1938 6t Wojaczyńska E, Skarżewski J, Sidorowicz Ł, Wieczorek R, Wojaczyński J. New J. Chem. 2016; 40: 9795 6u Tamura M, Ogata H, Ishida Y, Takahashi Y. Tetrahedron Lett. 2017; 58: 3808 6v Naganawa Y, Abe H, Nishiyama H. Chem. Commun. 2018; 54: 2674 6w Annapureddy RR, Jandl C, Bach T. J. Am. Chem. Soc. 2020; 142: 7374 7 Krapcho AP, Lanza JB. Org. Prep. Proced. Int. 2007; 39: 603 8 2,2′-(1,10-Phenanthroline-2,9-diyl)dibenzaldehyde (7) To a solution of 2,9-dichloro-1,10-phenanthroline (6; 1.50 g, 6.04 mmol) in 1,4-dioxane (80.0 mL) and H2O (8.0 mL) were added (2-formylphenyl)boronic acid (2.268 g, 15.12 mmol), Na2CO3 (2.564 g, 24.19 mmol), and Pd(PPh3)4 (0.60 mmol, 699 mg), and the mixture was stirred at 100 °C under N2 for 12 h. Upon completion of the reaction, the mixture was cooled to r.t. and filtered through a pad of Celite. The 1,4-dioxane was evaporated under reduced pressure, and the resulting mixture was extracted with CH2Cl2 (×3). The combined organic layers were washed with brine, dried (Na2SO4), and concentrated. The residue was purified by column chromatography [silica gel, CH2Cl2–MeOH (80:1)] to give a yellow solid; yield: 1.361 g (58%); mp 160–161 °C. 1H NMR (400 MHz, CHCl3): δ = 10.42 (s, 2 H), 8.38 (d, J = 8.4 Hz, 2 H), 8.06 (dd, J = 8.0, 1.2 Hz, 2 H), 7.94 (d, J = 8.0 Hz, 2 H), 7.91 (d, J = 7.2 Hz, 2 H), 7.88 (s, 2 H), 7.71 (td, J = 7.6, 1.2 Hz, 2 H), 7.56 (t, J = 7.6 Hz, 2 H). 13C NMR (101 MHz, CDCl3): δ = 192.53, 156.30, 145.92, 143.30, 136.84, 135.72, 133.18, 130.88, 129.23, 128.59, 127.78, 126.75, 123.93. HRMS (ESI-TOF): m/z [M + H]+ calcd for C26H17N2O2: 389.1285; found: 389.1276. 9 Diamino Diester 8a; Typical Procedure A dried 50 mL Schlenk flask was charged with methyl l-phenylalaninate hydrochloride (397 mg, 1.84 mmol), intermediate 7a (300 mg, 0.77 mmol), and MgSO4 (222 mg, 1.84 mmol) under N2. CH2Cl2 (10 mL) was added, the mixture was cooled to 0 °C, and Et3N (255 μL, 1.84 mmol) was added. The mixture was stirred at 0 °C for 0.5 h; it was then allowed to warm to r.t. and stirred for 12 h. The mixture was then cooled again to 0 °C before NaBH(OAc)3 (1.632 g, 7.7 mmol) was added. The resulting mixture was stirred at 0 °C for 0.5 h, warmed slowly to r.t., and stirred overnight. The reaction was quenched with H2O, and the product was extracted with CH2Cl2 (×3). The organic layers were combined, dried (Na2SO4), and concentrated, and the residue was purified by column chromatography [silica gel, CH2Cl2–MeOH (80:1)] to give a yellow solid; yield: 386 mg (70%); mp 106–107 °C; [α]D 20 +45.6 (c = 0.25, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 8.33 (d, J = 8.4 Hz, 2 H), 7.91 (s, 2 H), 7.85 (d, J = 8.0 Hz, 2 H), 7.65 (d, J = 7.6 Hz, 2 H), 7.51 (d, J = 5.6 Hz, 2 H), 7.44 (t, J = 6.4 Hz, 2 H), 7.34 (t, J = 7.2 Hz, 2 H), 7.11–7.05 (m, 6 H), 6.90–6.82 (m, 4 H), 4.06–3.82 (m, 4 H), 3.51–3.67 (m, 2 H), 3.08 (s, 6 H), 2.89 (s, 2 H), 2.41–2.59 (m, 2 H). 13C NMR (101 MHz, CDCl3): δ = 171.70, 158.72, 144.92, 140.88, 137.50, 136.26, 133.13, 132.74, 130.48, 129.58, 129.39, 129.21, 128.28, 127.89, 126.76, 126.73, 124.36, 61.73, 51.60, 49.60, 36.93. HRMS (ESI-TOF): m/z [M + H]+ calcd for C46H43N4O4: 715.3279; found: 715.3263. 10 Chiral Phenanthroline Ligand 9a; Typical ProcedureTo a solution of diester 8a (100 mg, 0.14 mmol) in MeOH (10 mL) and H2O (2 mL) was added NaOH (112 mg, 2.8 mmol) at r.t., and the mixture was heated to 60 °C with stirring for 12 h. Upon completion of the reaction, the pH of the solution was adjusted to 3–4 by addition of 1.0 M aq HCl. The solvent was then removed under reduced pressure and the crude product was dissolved in MeOH. The solution was filtered and concentrated, and the crude product was crystallized from MeOH to give a yellow solid; yield: 96 mg (91%); mp 200–201 °C; [α]D 20 –88.8 (c 0.25, MeOH). 1H NMR (400 MHz, DMSO-d 6): δ = 8.71 (d, J = 8.4 Hz, 2 H), 8.17 (s, 2 H), 8.08 (d, J = 8.4 Hz, 2 H), 7.72 (d, J = 7.2 Hz, 2 H), 7.67–7.61 (m, 2 H), 7.56–7.45 (m, 4 H), 7.09–7.00 (m, 6 H), 6.88–6.79 (m, 4 H), 4.18 (d, J = 13.2 Hz, 2 H), 4.09 (d, J = 12.8 Hz, 2 H), 3.45 (t, J = 7.0 Hz, 2 H), 2.94–2.76 (m, 2 H), 2.76–2.64 (m, 2 H). 13C NMR (101 MHz, DMSO-d 6): δ = 170.09, 157.68, 143.91, 140.81, 138.30, 136.16, 132.41, 131.46, 130.53, 129.29, 129.24, 128.92, 127.92, 127.67, 126.75, 126.43, 124.37, 60.60, 47.19, 34.97. HRMS (ESI-TOF): m/z [M + H]+ calcd for C44H39N4O4: 687.2966; found: 687.2962. 11 Copper Complex 10a To a solution of 9a (100 mg, 0.13 mmol) in MeOH (10 mL) was added NaH (112 mg, 60% dispersion in mineral oil, 2.8 mmol), and the mixture was stirred at r.t. for 0.5 h. A solution of CuCl2 in MeOH (1.0 mL) was added dropwise to the mixture, which was then heated to 40 °C and stirred for 5 h. After cooling to r.t., the mixture was filtered through a pad of Celite and concentrated under reduced pressure. The crude product was purified by crystallization from MeOH–Et2O to give a deep-blue solid; yield: 21 mg (40%); mp 210–211 °C. HRMS (ESI-TOF): m/z [M + H]+ calcd for C44H38ClCuN4O4: 784.1872; found: 784.1863. 12 CCDC 2106610 contains the supplementary crystallographic data for compound 10a. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures Zusatzmaterial Zusatzmaterial Supporting Information