Subscribe to RSS
DOI: 10.1055/a-1681-7480
Iron-Catalyzed One-Pot Synthesis of Indole-Tethered Tetrasubstituted Pyrroles and Their Transformations to Indolizino[8,7-b]indole Derivatives
We are grateful for the support provided for this study by the National Natural Science Foundation of China (21871035, 21502013) and the Chongqing Research Program of Basic Research and Frontier Technology (cstc2019jcyj-msxm2653).
Abstract
We have developed an efficient iron-catalyzed one-pot reaction of tryptamines, ynones and nitroolefins, affording indole-tethered tetrasubstituted pyrroles in acceptable to good yields. Other aromatic and aliphatic amines can also be utilized in this process, delivering the corresponding highly functionalized tetrasubstituted pyrroles. Indolizino[8,7-b]indole derivatives could be obtained through TFA-, TfOH- or Fe(OTf)3-mediated cyclizations via dearomatization of indole. Unexpected dibrominated products, 7,9-dibromo-6,11-dihydro-5H-indolizino[8,7-b]indoles, were formed when trimethylphenylammonium tribromide (PTAP) was employed as electrophilic cyclization promoter.
Key words
one pot - iron salts - trifluoromethanesulfonic acid - ynones - pyrroles - indolizinoindolesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1681-7480.
- Supporting Information
Publication History
Received: 27 September 2021
Accepted after revision: 28 October 2021
Accepted Manuscript online:
28 October 2021
Article published online:
06 December 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 New address: X. Xiao, Chongqing Sansheng Industrial Co., Ltd. Beibei, Chongqing, 400799, P. R. of China.
- 2a Fan H, Peng J, Hamann MT, Hu JF. Chem. Rev. 2008; 108: 264
- 2b Pässler U, Knölker H.-J. The Pyrrolo[2,1-a]isoquinoline Alkaloids . In The Alkaloids: Chemistry and Biology, Vol. 70, Chap. 2. Knölker H.-J. Academic Press; London, England: 2011: 79-151
- 2c Young IS, Thornton PD, Thompson A. Nat. Prod. Rep. 2010; 27: 1801
- 2d Zhou H, Aguilar A, Chen J, Bai L, Liu L, Meagher JL, Yang C.-Y, McEachern D, Cong X, Stuckey JA, Wang S. J. Med. Chem. 2012; 55: 6149
- 2e Frolova LV, Magedov IV, Romero AE, Karki M, Otero I, Hayden K, Evdokimov NM, Banuls LM. Y, Rastogi SK, Smith WR, Lu S.-L, Kiss R, Shuster CB, Hamel E, Betancourt T, Rogelj S, Kornienko AE. J. Med. Chem. 2013; 56: 6886
- 3a Trofimov BA, Sobenina LN, Demenev AP, Mikhaleva AI. Chem. Rev. 2004; 104: 2481
- 3b Komatsubara M, Umeki T, Fukuda T, Iwao M. J. Org. Chem. 2014; 79: 529
- 3c Li Q, Jiang J, Fan A, Cui Y, Jia Y. Org. Lett. 2011; 13: 312
- 3d Kreipl AT, Reid C, Steglich W. Org. Lett. 2002; 4: 3287
- 3e Zhang Z, Liu B. Org. Biomol. Chem. 2017; 15: 207
- 3f Boger DL, Boyce CW, Labroli MA, Sehon CA, Jin Q. J. Am. Chem. Soc. 1999; 121: 54
- 3g Gulevich AV, Dudnik AS, Chernyak N, Gevorgyan V. Chem. Rev. 2013; 113: 3084
- 3h Ye C, Jiao Y, Chiou M.-F, Li Y, Bao H. Chem. Sci. 2021; 12: 9162
- 4a Estévez V, Villacampa M, Menéndez JC. Chem. Soc. Rev. 2010; 39: 4402
- 4b Estévez V, Villacampa M, Menéndez JC. Chem. Soc. Rev. 2014; 43: 4633
- 4c Hayashi Y. Chem. Sci. 2016; 7: 866
- 5a Liu X.-t, Huang L, Zheng F.-j, Zhan Z.-p. Adv. Synth. Catal. 2008; 350: 2778
- 5b Liao J.-Y, Yap WJ, Wu J, Wong MW, Zhao Y. Chem. Commun. 2017; 53: 9067
- 5c Lu Y, Arndtsen BA. Angew. Chem. Int. Ed. 2008; 47: 5430
- 5d Cadierno V, Gimeno J, Nebra N. Chem. Eur. J. 2007; 13: 9973
- 5e Fleige M, Glorius F. Chem. Eur. J. 2017; 23: 10773
- 5f Liu P, Liu J.-l, Wang H.-s, Pan Y.-m, Liang H, Chen Z.-F. Chem. Commun. 2014; 50: 4795
- 5g Dhara D, Gayen KS, Khamarui S, Pandit P, Ghosh S, Maiti DK. J. Org. Chem. 2012; 77: 10441
- 5h Kim JH, Choi SY, Bouffard J, Lee S.-g. J. Org. Chem. 2014; 79: 9253
- 5i Hong D, Zhu Y, Li Y, Lin X, Lu P, Wang Y. Org. Lett. 2011; 13: 4668
- 5j Frolova LV, Evdokimov NM, Hayden K, Malik I, Rogelj S, Kornienko A, Magedov IV. Org. Lett. 2011; 13: 1118
- 5k Thompson BB, Montgomery J. Org. Lett. 2011; 13: 3289
- 5l Liu W, Jiang H, Huang L. Org. Lett. 2010; 12: 312
- 5m Binder JT, Kirsch SF. Org. Lett. 2006; 8: 2151
- 5n Wang X, Xu X.-P, Wang S.-Y, Zhou W, Ji S.-J. Org. Lett. 2013; 15: 4246
- 5o Wu X, Zhao P, Geng X, Wang C, Wu Y.-d, Wu A.-x. Org. Lett. 2018; 20: 688
- 5p Truong PM, Mandler MD, Doyle MP. Tetrahedron Lett. 2015; 56: 3042
- 5q Mamedov VA, Hafizova EA, Zamaletdinova AI, Rizvanov IK, Mirgorodskaya AB, Zakharova LY, Latypov SK, Sinyashin OG. Tetrahedron 2015; 71: 9143
- 5r Karpov AS, Rominger F, Müller TJ. J. Org. Biomol. Chem. 2005; 3: 4382
- 6a Zi W, Zuo Z, Ma D. Acc. Chem. Res. 2015; 48: 702
- 6b Zhang D, Song H, Qin Y. Acc. Chem. Res. 2011; 44: 447
- 7a Zhu D, Sun J, Yan C.-G. RSC Adv. 2014; 4: 62817
- 7b Ciccolini C, Mari M, Lucarini S, Mantellini F, Piersanti G, Favi G. Adv. Synth. Catal. 2018; 360: 4060
- 7c Mantenuto S, Ciccolini C, Lucarini S, Piersanti G, Favi G, Mantellini F. Org. Lett. 2017; 19: 608
- 8a Roche SP, Tendoung J.-JY, Tréguier B. Tetrahedron 2015; 71: 3549
- 8b Wertjes WC, Southgate EH, Sarlah D. Chem. Soc. Rev. 2018; 47: 7996
- 8c Zhuo C.-X, Zhang W, You S.-L. Angew. Chem. Int. Ed. 2012; 51: 12662
- 8d Xia Z.-L, Xu Q.-F, Zheng C, You S.-L. Chem. Soc. Rev. 2020; 49: 286
- 8e Roche SP, Porco JA. Jr. Angew. Chem. Int. Ed. 2011; 50: 4068
- 8f Ramachandran G, Sathiyanarayanan KI. Curr. Organocatal. 2015; 2: 14
- 9a Maiti S, Biswas S, Jana U. J. Org. Chem. 2010; 75: 1674
- 9b Guan Z.-H, Li L, Ren Z.-H, Li J, Zhao M.-N. Green Chem. 2011; 13: 1664
- 9c Ghabraie E, Balalaie S, Bararjanian M, Bijanzadeh HR, Rominger F. Tetrahedron 2011; 67: 5415
- 9d Xu H, Li Y, Xing M, Jia J, Han L, Ye Q, Gao J. Chem. Lett. 2015; 44: 574
- 9e Cai Q, Li D.-K, Zhou R.-R, Shu W.-M, Wu Y.-D, Wu A.-X. Org. Lett. 2016; 18: 1342
- 9f Mangalaraj S, Ramanathan CR. RSC Adv. 2012; 2: 12665
- 9g Meshram HM, Babu BM, Kumar S, Thakur PB, Bangade VM. Tetrahedron Lett. 2013; 54: 2296
- 10a Cui H.-L, Liu S.-W, Xiao X. J. Org. Chem. 2020; 85: 15382
- 10b Xiao X, Chen X.-H, Wang X.-X, Wu F.-Y, Cui H.-L. Tetrahedron Lett. 2021; 77: 153255
- 11a Fraile A, Parra A, Tortosa M, Alemán J. Tetrahedron 2014; 70: 9145
- 11b Li Y, Yu J, Bi Y, Yan G, Huang D. Adv. Synth. Catal. 2019; 361: 4839
- 11c Nájera C, Sydnes LK, Yus M. Chem. Rev. 2019; 119: 11110
- 12a Zhang X.-Y, Shen Z, Hu L.-L, Wang L.-J, Lin Y.-S, Xie J.-W, Cui H.-L. Tetrahedron Lett. 2016; 57: 3790
- 12b Cui H.-L, Li J.-Q. Asian J. Org. Chem. 2021; 10: 2170
- 13a Ke J, He C, Liu H, Li M, Lei A. Chem. Commun. 2013; 49: 7549
- 13b Toh KK, Wang Y.-F, Ng EP. J, Chiba S. J. Am. Chem. Soc. 2011; 133: 13942
- 13c Weng J, Chen Y, Yue B, Xu M, Jin H. Eur. J. Org. Chem. 2015; 3164
- 13d Rakshit S, Patureau FW, Glorius F. J. Am. Chem. Soc. 2010; 132: 9585
- 13e Zhang S, Ma Y, Lan J, Song F, You J. Org. Biomol. Chem. 2015; 13: 5867
- 13f Yan R.-L, Luo J, Wang C.-X, Ma C.-W, Huang G.-S, Liang Y.-M. J. Org. Chem. 2010; 75: 5395
- 13g Rueping M, Parra A. Org. Lett. 2010; 12: 5281
- 13h Fang G, Liu J, Fu J, Liu Q, Bi X. Org. Lett. 2017; 19: 1346
- 13i Lei T, Liu W.-Q, Li J, Huang M.-Y, Yang B, Meng Q.-Y, Chen B, Tung C.-H, Wu L.-Z. Org. Lett. 2016; 18: 2479
- 13j Zhao M, Wang F, Li X. Org. Lett. 2012; 14: 1412
- 13k Abdukader A, Xue Q, Lin A, Zhang M, Cheng Y, Zhu C. Tetrahedron Lett. 2013; 54: 5898
- 14a Zhang X.-Y, Yang Z.-W, Chen Z, Wang J, Yang D.-L, Shen Z, Hu L.-L, Xie J.-W, Zhang J, Cui H.-L. J. Org. Chem. 2016; 81: 1778
- 14b Tan H, Jiang X.-F, Jiang L, Yuang C, Tang X, Li M.-F, Liu S.-W, Liu S, Cui H.-L. Synlett 2020; 31: 723
- 15a Klappa JJ, Rich AE, McNeill K. Org. Lett. 2002; 4: 435
- 15b Shekarrao K, Kaishap PP, Gogoi S, Boruah RC. Adv. Synth. Catal. 2015; 357: 1187
- 16a Sarhan AA. O, Bolm C. Chem. Soc. Rev. 2009; 38: 2730
- 16b Bolm C, Legros J, Paih LL, Zani L. Chem. Rev. 2004; 104: 6217
- 16c Sun C.-L, Li B.-J, Shi Z.-J. Chem. Rev. 2011; 111: 1293
- 16d Shang R, Ilies L, Nakamura E. Chem. Rev. 2017; 117: 9086
- 16e Cornil J, Gonnard L, Bensoussan C, Serra-Muns A, Gnamm C, Commandeur C, Commandeur M, Reymond S, Guérinot A, Cossy J. Acc. Chem. Res. 2015; 48: 761
- 16f Kyne SH, Lefèvre G, Ollivier C, Petit M, Cladera V.-AR, Fensterbank L. Chem. Soc. Rev. 2020; 49: 8501
- 16g Gopalaiah K. Chem. Rev. 2013; 113: 3248
- 17a Wang Y, Bi X, Li D, Liao P, Wang Y, Yang J, Zhang Q, Liu Q. Chem. Commun. 2011; 47: 809
- 17b Bisht S, Peddinti RK. J. Org. Chem. 2017; 82: 13617
- 17c Zhao M.-N, Ren Z.-H, Yang D.-S, Guan Z.-H. Org. Lett. 2018; 20: 1287
- 18 Cui H.-L, Jiang L, Tan H, Liu S. Adv. Synth. Catal. 2019; 361: 4772
- 19 CCDC 2080872 (4a) and CCDC 2099118 (7d) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 20a Elassar A.-Z, El-Khair AA. Tetrahedron 2003; 59: 8463
- 20b Chattopadhyay AK, Hanessian S. Chem. Commun. 2015; 51: 16450
- 20c Fu L, Wan J.-P. Asian J. Org. Chem. 2019; 8: 767
For selected examples, see:
For reviews, see:
For reviews on dearomatization, see:
For selected examples of the synthesis of multisubstituted pyrroles using enamino carbonyl compounds, see:
For examples of the synthesis of heterocycle-tethered multisubstituted pyrroles, see:
For reviews on transformations of enamino ketones, see: