Synlett 2022; 33(03): 277-282
DOI: 10.1055/a-1684-0448
letter

Synthesis of Enantiomerically Pure Oxa[9]helicene Derivatives by a Nucleophilic Cyclodehydration Reaction of Helical 1,1′-Bibenzo[c]phenanthrenylidene-2,2′-dione

a   Collaboration Department for Innovation (CDI), Utsunomiya University, Utsunomiya, Tochigi 321-8585, Japan
b   Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, Utsunomiya, Tochigi 321-8585, Japan
,
Mahmuda Akter
b   Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, Utsunomiya, Tochigi 321-8585, Japan
,
Mohammad Shahabuddin
c   Department of Chemistry, Dhaka University of Engineering and Technology, Gazipur-1707, Gazipur, Bangladesh
,
Mohammad Salim
d   Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh
,
Ken-ichi Iimura
b   Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, Utsunomiya, Tochigi 321-8585, Japan
,
Michinori Karikomi
b   Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, Utsunomiya, Tochigi 321-8585, Japan
› Institutsangaben
We would like to express our gratitude to the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of the Japanese Government for providing the MEXT scholarship. We are also grateful to the Collaboration Department for Innovation (CDI) of Utsunomiya University for financial support.


Abstract

Enantiomerically pure 9-substituted 11-oxa[9]helicene derivatives have been synthesized through furan-ring formation by a nucleophilic cyclodehydration reaction of enantiomerically pure helical polycondensed 2,2′-diphenoquinone derivatives (1,1′-bibenzo[c]phenanthrenylidene-2,2′-diones). (P)-2,2′-diphenoquinone derivatives afforded (P)-oxa[9]helicenes, whereas (M)-2,2′-diphenoquinone derivatives afforded the corresponding (M)-oxa[9]helicenes. Therefore, the ring-closing reaction afforded the corresponding enantiomerically pure products without decreasing the enantiomeric excess, and it proceeded stereospecifically with retention of the configuration. The thermal stability of an oxa[9]helicene was studied by determining the decrease in its enantiomeric excess at various temperatures, and its racemization barrier was found to be 165.6 kJ/mol.

Supporting Information



Publikationsverlauf

Eingereicht: 17. Oktober 2021

Angenommen nach Revision: 02. November 2021

Accepted Manuscript online:
02. November 2021

Artikel online veröffentlicht:
24. November 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Lin W.-B, Li M, Fang L, Chen C.-F. Chin. Chem. Lett. 2018; 29: 40
    • 1b Chen C.-F, Shen Y. Helicene Chemistry: From Synthesis to Applications. Springer; Berlin: 2017
    • 1c Shen Y, Chen C.-F. Chem. Rev. 2012; 112: 1463
    • 1d Gingras M. Chem. Soc. Rev. 2013; 42: 968
    • 1e Gingras M, Félix G, Peresutti R. Chem. Soc. Rev. 2013; 42: 1007
    • 1f Gingras M. Chem. Soc. Rev. 2013; 42: 1051
    • 1g Zhao W.-L, Li M, Lu H.-Y, Chen C.-F. Chem. Commun. 2019; 55: 13793
    • 1h Nakamura K, Furumi S, Takeuchi M, Shibuya T, Tanaka K. J. Am. Chem. Soc. 2014; 136: 5555
    • 1i Zhu Y, Xia Z, Cai Z, Yuan Z, Jiang N, Li T, Wang Y, Guo X, Li Z, Ma S, Zhong D, Li Y, Wang J. J. Am. Chem. Soc. 2018; 140: 4222
    • 1j Nakakuki Y, Hirose T, Sotome H, Miyasaka H, Matsuda K. J. Am. Chem. Soc. 2018; 140: 4317
    • 1k Guo X, Yuan Z, Zhu Y, Li Z, Huang R, Xia Z, Zhang W, Li Y, Wang J. Angew. Chem. Int. Ed. 2019; 58: 16966
    • 2a Liu P, Bao X, Naubron J.-V, Chentouf S, Humbel S, Vanthuyne N, Jean M, Giordano L, Rodriguez J, Bonne D. J. Am. Chem. Soc. 2020; 142: 16199
    • 2b Shyam SM, Sahoo S, Bedekar AV. Tetrahedron: Asymmetry 2016; 27: 777
    • 2c Sundar MS, Bedekar AV. Org. Lett. 2015; 17: 5808
    • 2d Matsuno T, Koyama Y, Hiroto S, Kumar J, Kawai T, Shinokubo H. Chem. Commun. 2015; 51: 4607
    • 3a Stępień M, Gońka E, Żyła M, Sprutta N. Chem. Rev. 2017; 117: 3479
    • 3b Dhbaibi K, Favereau L, Crassous J. Chem. Rev. 2019; 119: 8846
    • 3c Cruz CM, Castro-Fernández S, Maçôas E, Cuerva JM, Campaña AG. Angew. Chem. Int. Ed. 2018; 57: 14782
    • 3d Evans PJ, Ouyang J, Favereau L, Crassous J, Fernández I, Perles J, Martín N. Angew. Chem. Int. Ed. 2018; 57: 6774
    • 3e Starý I, Stará IG. Targets Heterocycl. Syst. 2017; 21: 23
  • 4 Sako M, Takeuchi Y, Tsujihara T, Kodera J, Kawano T, Takizawa S, Sasai H. J. Am. Chem. Soc. 2016; 138: 11481
  • 5 Hossain MS, Shahabuddin M, Karikomi M. Tetrahedron Lett. 2021; 69: 152948
  • 6 Salim M, Akutsu A, Kimura T, Minabe M, Karikomi M. Tetrahedron Lett. 2011; 52: 4518
  • 7 Salim M, Ubukata H, Kimura T, Karikomi M. Tetrahedron Lett. 2011; 52: 6591
  • 8 Salim M, Kimura T, Karikomi M. Heterocycles 2013; 87: 547
  • 9 Shahabuddin M, Salim M, Tomura M, Kimura T, Karikomi M. Tetrahedron Lett. 2016; 57: 5902
  • 10 Shahabuddin M, Ohgoshi K, Hossain MS, Kimura T, Karikomi M. Tetrahedron Lett. 2017; 58: 3704
  • 11 Shahabuddin M, Hossain MS, Kimura T, Karikomi M. Tetrahedron Lett. 2017; 58: 4491
  • 12 Oxahelicenes 2a and 3a; General Procedure A round-bottomed flask was charged with the appropriate (P)- or (M)-1 (29.04 mg, 0.06 mmol), Lawesson’s reagent (2 equiv), and toluene (4 mL), and the mixture was stirred at 60 °C for 16–20 h until the reaction was complete. The solvent was evaporated, and the mixture was passed through a silica gel column with CHCl3 as eluent. The first yellow-colored fraction was evaporated to give the required product. (P)-Oxa[9]helicene (2a) White solid; yield: 87%; mp >300 ℃; [α]D 25 +2087 (c 1.13 × 10–2, MeCN). IR (KBr): 3040 (arom C–H), 1250 (–O–), 830, 730 cm–1. 1H NMR (500 MHz, CDCl3): δ = 5.72 (t, J = 7.5 Hz, 2 H), 6.19 (d, J = 8.5 Hz, 2 H), 6.76 (t, J = 7.3 Hz, 2 H), 7.31 (d, J = 8.0 Hz, 2 H), 7.37 (d, J = 8.5 Hz, 2 H), 7.57 (d, J = 8.5 Hz, 2 H), 7.60 (d, J = 8.5 Hz, 2 H), 8.11 (d, J = 8.5 Hz, 2 H), 8.27 (d, J = 8.5 Hz, 2 H), 8.31 (d, J = 8.0 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 110.95, 121.02, 122.19, 124.03, 124.33, 124.62, 125.15, 125.34, 126.20, 126.27, 126.50, 126.93, 127.29, 127.61, 129.45, 129.51, 129.94, 154.22. HRMS (EI): m/z [M]+ calcd for C36H20O: 468.1514; found: 468.1518.