Synlett 2022; 33(03): 201-206
DOI: 10.1055/a-1694-4695
synpacts

Catalytic Atroposelective Dynamic Kinetic Resolution of Substituted Indoles

Ahreum Kim
,
Yongseok Kwon
This work is supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSTI) (No. 2020R1C1C1006231).


Abstract

Advances in asymmetric catalysis have led to enormous progress in the atroposelective synthesis of axially chiral biaryls. Because of the biological importance of indoles, stereogenic axes in aryl-substituted indoles have attracted considerable research attention in recent years. Here we present a summary of recent advances in the atroposelective synthesis of aryl-substituted indoles by dynamic kinetic resolution. Although several researchers have developed enantioselective syntheses of 3-arylindoles, N-arylindoles have been much less studied. Accordingly, we have developed a Pictet–Spengler reaction with catalytic and enantioselective control of the axial chirality around the C–N bond of the product. A chiral phosphoric acid induces the cyclization smoothly and with high yields and excellent enantioselectivities. To achieve this high selectivity, an NH group at the ortho-position of the N-substituted aromatic ring that interacts favorably with the catalyst is required. Furthermore, when substituted aldehydes are used instead of paraformaldehyde, both point and axial chiralities can be controlled during the cyclization.

1 Introduction

2 Atropisomerism in Indoles

3 Atroposelective Dynamic Kinetic Resolution of 3-Arylindoles

4 Atroposelective Dynamic Kinetic Resolution of N-Arylindoles

5 Conclusions



Publication History

Received: 22 October 2021

Accepted after revision: 11 November 2021

Accepted Manuscript online:
11 November 2021

Article published online:
03 December 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Present address: School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea.
    • 2a Bringmann G, Gulder T, Gulder TA. M, Breuning M. Chem. Rev. 2011; 111: 563
    • 2b Bringmann G, Menche D. Acc. Chem. Res. 2001; 34: 615
    • 3a Glunz PW. Bioorg. Med. Chem. Lett. 2018; 28: 53
    • 3b Toenjes ST, Gustafson JL. Future Med. Chem. 2018; 10: 409
    • 3c LaPlante SR, Edwards PJ, Fader LD, Jakalian A, Hucke O. ChemMedChem 2011; 6: 505
    • 4a Noyori R, Takaya H. Acc. Chem. Res. 1990; 23: 345
    • 4b Li Y.-M, Kwong F.-Y, Yu W.-Y, Chan AS. C. Coord. Chem. Rev. 2007; 251: 2119
    • 4c Zilate B, Castrogiovanni A, Sparr C. ACS Catal. 2018; 8: 2981

      For recent selected reviews, see:
    • 5a Carmona JA, Rodríguez-Franco C, Fernández R, Hornillos V, Lassaletta JM. Chem. Soc. Rev. 2021; 50: 2968
    • 5b Cheng JK, Xiang S.-H, Li S, Ye L, Tan B. Chem. Rev. 2021; 121: 4805
    • 5c Cheng D.-J, Shao Y.-D. Adv. Synth. Catal. 2020; 362: 3081
    • 5d Liao G, Zhou T, Yao Q.-J, Shi B.-F. Chem. Commun. 2019; 55: 8514
    • 5e Wencel-Delord J, Panossian A, Leroux FR, Colobert F. Chem. Soc. Rev. 2015; 44: 3418
  • 6 Loxq P, Manoury E, Poli R, Deydier E, Labande A. Coord. Chem. Rev. 2016; 308: 131

    • For recent selected examples, see:
    • 7a Zuo Z, Kim RS, Watson DA. J. Am. Chem. Soc. 2021; 143: 1328
    • 7b Zhao X.-J, Li Z.-H, Ding T.-M, Tian J.-M, Tu Y.-Q, Wang A.-F, Xie Y.-Y. Angew. Chem. Int. Ed. 2021; 60: 7061
    • 7c Qiu H, Shuai B, Wang Y.-Z, Liu D, Chen Y.-G, Gao P.-S, Ma H.-X, Chen S, Mei T.-S. J. Am. Chem. Soc. 2020; 142: 9872
    • 7d Yang H, Sun J, Gu W, Tang W. J. Am. Chem. Soc. 2020; 142: 8036
    • 7e Yan S, Xia W, Li S, Song Q, Xiang S.-H, Tan B. J. Am. Chem. Soc. 2020; 142: 7322

      For recent selected examples, see:
    • 8a Wu X, Witzig RM, Beaud R, Fischer C, Häussinger D, Sparr C. Nat. Catal. 2021; 4: 457
    • 8b Xu M.-M, You X.-Y, Zhang Y.-Z, Lu Y, Tan K, Yang L, Cai Q. J. Am. Chem. Soc. 2021; 143: 8993
    • 8c Kwon Y, Li J, Reid JP, Crawford JM, Jacob R, Sigman MS, Toste FD, Miller SJ. J. Am. Chem. Soc. 2019; 141: 6698
    • 8d Xu K, Li W, Zhu S, Zhu T. Angew. Chem. Int. Ed. 2019; 58: 17625
    • 8e Zhao C, Guo D, Munkerup K, Huang K.-W, Li F, Wang J. Nat. Commun. 2018; 9: 611
  • 9 Di Iorio N, Crotti S, Bencivenni G. Chem. Rec. 2019; 19: 2095

    • For recent selected examples, see:
    • 10a Barik S, Shee S, Das S, Gonnade RG, Jindal G, Mukherjee S, Biju AT. Angew. Chem. Int. Ed. 2021; 60: 12264
    • 10b Sun F, Wang T, Cheng G.-J, Fang X. ACS Catal. 2021; 11: 7578
    • 10c Munday ES, Grove MA, Feoktistova T, Brueckner AC, Walden DM, Young CM, Slawin AM. Z, Campbell AD, Cheong PH.-Y, Smith AD. Angew. Chem. Int. Ed. 2020; 59: 7897
    • 10d Romero-Arenas A, Hornillos V, Iglesias-Sigüenza J, Fernández R, López-Serrano J, Ros A, Lassaletta JM. J. Am. Chem. Soc. 2020; 142: 2628
    • 10e Yang G, Guo D, Meng D, Wang J. Nat. Commun. 2019; 10: 3062

      For recent selected examples, see:
    • 11a Ma C, Sheng F.-T, Wang H.-Q, Deng S, Zhang Y.-C, Jiao Y, Tan W, Shi F. J. Am. Chem. Soc. 2020; 142: 15686
    • 11b Liu W, Jiang Q, Yang X. Angew. Chem. Int. Ed. 2020; 59: 23598
    • 11c Lu S, Ng SV. H, Lovato K, Ong J.-Y, Poh SB, Ng XQ, Kürti L, Zhao Y. Nat. Commun. 2019; 10: 3061

      For recent selected examples, see:
    • 12a Carmona JA, Rodríguez-Franco C, López-Serrano J, Ros A, Iglesias-Sigüenza J, Fernández R, Lassaletta JM, Hornillos V. ACS Catal. 2021; 11: 4117
    • 12b Beleh OM, Miller E, Toste FD, Miller SJ. J. Am. Chem. Soc. 2020; 142: 16461
    • 12c Yang G.-H, Zheng H, Li X, Cheng J.-P. ACS Catal. 2020; 10: 2324
    • 13a Kawasaki T, Higuchi K. Nat. Prod. Rep. 2005; 22: 761
    • 13b Kochanowska-Karamyan AJ, Hamann MT. Chem. Rev. 2010; 110: 4489
    • 13c Manickam M, Iqbal P, Belloni M, Kumar S, Preece JA. Isr. J. Chem. 2012; 52: 917
    • 13d Patil SA, Patil R, Miller DD. Future Med. Chem. 2012; 4: 2085
    • 13e Zhang M.-Z, Chen Q, Yang G.-F. Eur. J. Med. Chem. 2015; 89: 421

      For selected examples, see:
    • 14a Lu D.-L, Chen Y.-H, Xiang S.-H, Yu P, Tan B, Li S. Org. Lett. 2019; 21: 6000
    • 14b Xi C.-C, Zhao X.-J, Tian J.-M, Chen Z.-M, Zhang K, Zhang F.-M, Tu Y.-Q, Dong J.-W. Org. Lett. 2020; 22: 4995
    • 14c Ma R, Wang X, Zhang Q, Chen L, Gao J, Feng J, Wei D, Du D. Org. Lett. 2021; 23: 4267
    • 14d Li X, Zhao L, Qi Z, Li X. Org. Lett. 2021; 23: 5901
    • 14e Wang C.-S, Wei L, Fu C, Wang X.-H, Wang C.-J. Org. Lett. 2021; 23: 7401
    • 15a He C, Hou M, Zhu Z, Gu Z. ACS Catal. 2017; 7: 5316
    • 15b Ma C, Jiang F, Sheng F.-T, Jiao Y, Mei G.-J, Shi F. Angew. Chem. Int. Ed. 2019; 58: 3014
    • 15c Jiang F, Chen K.-W, Wu P, Zhang Y.-C, Jiao Y, Shi F. Angew. Chem. Int. Ed. 2019; 58: 15104
    • 15d Sheng F.-T, Li Z.-M, Zhang Y.-Z, Sun L.-X, Zhang Y.-C, Tan W, Shi F. Chin. J. Chem. 2020; 38: 583
    • 15e Yuan X, Wu X, Peng F, Yang H, Zhu C, Fu H. Chem. Commun. 2020; 56: 12648
  • 16 Li L.-J, Chen J.-J, Feng C.-F, Li H.-Y, Wang X, Xu H, Dai H.-X. Org. Lett. 2020; 22: 9169
  • 17 Kim A, Kim A, Park S, Kim S, Jo H, Ok KM, Lee SK, Song J, Kwon Y. Angew. Chem. Int. Ed. 2021; 60: 12279
    • 18a Pictet A, Spengler T. Ber. Dtsch. Chem. Ges. 1911; 44: 2030
    • 18b Tatsui G. J. Pharm. Soc. Jpn. 1928; 48: 453
  • 19 Seayad J, Seayad AM, List B. J. Am. Chem. Soc. 2006; 128: 1086

    • For selected examples, see:
    • 20a Mons E, Wanner MJ, Ingemann S, van Maarseveen JH, Hiemstra H. J. Org. Chem. 2014; 79: 7380
    • 20b Wang S.-G, Xia Z.-L, Xu R.-Q, Liu X.-J, Zheng C, You S.-L. Angew. Chem. Int. Ed. 2017; 56: 7440
    • 20c Klausen RS, Kennedy CR, Hyde AM, Jacobsen EN. J. Am. Chem. Soc. 2017; 139: 12299
    • 20d Glinsky-Olivier N, Yang S, Retailleau P, Gandon V, Guinchard X. Org. Lett. 2019; 21: 9446
    • 20e Nalikezhathu A, Cherepakhin V, Williams TJ. Org. Lett. 2020; 22: 4979
    • 20f Andres R, Wang Q, Zhu J. J. Am. Chem. Soc. 2020; 142: 14276