Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2022; 33(01): 52-56
DOI: 10.1055/a-1699-4766
DOI: 10.1055/a-1699-4766
cluster
Editorial Board Cluster
Pd-Catalyzed Arylation of 1,2-Amino Alcohol Derivatives via β-Carbon Elimination
We thank the Institut Català d’Investigació Química (ICIQ), the Ministerio de Ciencia, Innovación y Universidades (MCI, FEDER/MCI – AEI/PGC2018-096839-B-I00 and PID2019-109236RB-I00), the European Research Council (ERC) under European Union’s Horizon 2020 research and innovation program (883756), Ministerio de Ciencia e Innovación (MICINN) through Severo Ochoa Excellence Accreditation 2020–2023 (CEX2019-000925-S, MIC/AEI), and the Generalitat de Catalunya (CERCA Program) for financial support.

Abstract
Herein, we describe a Pd-catalyzed arylation of 1,2-amino alcohols with aryl halides enabled by a retroallylation manifold. This protocol constitutes a new entry point to β-arylated aldehydes via the intermediacy of in situ generated enamine intermediates. The protocol is characterized by its exquisite regioselectivity profile and broad substrate scope – including challenging substrate combinations – even in an enantioselective manner.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1699-4766.
- Supporting Information
Publication History
Received: 16 September 2021
Accepted after revision: 17 November 2021
Accepted Manuscript online:
17 November 2021
Article published online:
14 December 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 de Meijere A, Bräse S, Oestreich M. Metal-Catalyzed Cross-Coupling Reactions and More . Wiley-VCH; Weinheim: 2014
- 2a Knappke CE. I, Grupe S, Gärtner D, Corpet M, Gosmini C, Jacobi von Wangelin A. Chem. Eur. J. 2014; 20: 6828
- 2b Moragas T, Correa A, Martin R. Chem. Eur. J. 2014; 20: 8242
- 2c Weix D. J. Acc. Chem. Res. 2015; 48: 1767
- 2d Wang X, Dai Y, Gong H. Top. Curr. Chem. 2016; 374: 43
- 2e Knappke CE. I, Grupe S, Gärtner S, Corpet M, Gosmini C, Jacobi von Wangelin A. Chem. Eur. J. 2014; 20: 6828
- 3a McMurray L, O’Hara F, Gaunt JM. Chem. Soc. Rev. 2011; 40: 1885
- 3b Hartwig FJ. Chem. Soc. Rev. 2011; 40: 1885
- 3c Lyons WT, Sanford SM. Chem Rev. 2010; 110: 1147
- 3d Chen X, Engle KM, Wang DH, Yu J.-Q. Angew. Chem. Int Ed. 2009; 48: 5094 ; and references therein
- 4a Murakami M, Matsuda T. Chem. Commun. 2011; 47: 1100
- 4b Seiser T, Cramer N. Org. Biomol. Chem. 2009; 7: 2835
- 4c Rubin M, Rubina M, Gevorgyan V. Chem. Rev. 2007; 107: 3117
- 4d Jun C.-H. Chem. Soc. Rev. 2004; 33: 610
- 4e Coe WJ, Dermenci A, Dong G. Org. Chem. Front. 2014; 1: 567
- 4f Chen F, Wang T, Jiao N. Chem. Rev. 2014; 114: 8613
- 4g Murakami M, Ishida N. J. Am. Chem. Soc. 2016; 138: 13579
- 4h McDonald TR, Mills LR, West MS, Rousseaux SA. L. Chem. Rev. 2021; 121: 3
- 4i Murakami M, Ishida N. Chem. Rev. 2021; 121: 264
- 4j Nogi K, Yorimitsu H. Chem. Rev. 2021; 121: 345
- 4k Lutz MD. R, Morandi B. Chem. Rev. 2021; 121: 300
- 5a Satoh T, Jones WD. Organometallics 2001; 20: 2916
- 5b Matsuda T, Tsuboi T, Murakami M. J. Am. Chem. Soc. 2007; 129: 12596
- 5c Xue Y, Dong G. J. Am. Chem. Soc. 2021; 143: 8272
- 5d Hou S.-H, Prichina AY, Dong G. Angew. Chem. Int. Ed. 2021; 60: 13057
- 5e Hou S. -H, Yu X, Zhang R, Deng L, Zhang M, Prichina AY, Dong G. J. Am. Chem. Soc. 2020; 142: 13180
- 5f Souillart L, Cramer N. Angew. Chem. Int. Ed. 2014; 53: 9640
- 5g Waibel M, Cramer N. Angew. Chem. Int. Ed. 2010; 49: 4455
- 5h Seiser T, Cramer N. J. Am. Chem. Soc. 2010; 132: 5340
- 5i Okumura S, Sun F, Ishida N, Murakami M. J. Am Chem. Soc. 2017; 139: 12414
- 5j Yada A, Fujita S, Murakami M. J. Am. Chem. Soc. 2014; 136: 7217
- 5k Ishida N, Ikemoto W, Murakami M. J. Am. Chem. Soc. 2014; 136: 5912
- 6a Rusina A, Vlcek AA. Nature 1965; 206: 295
- 6b Wong W, Singer SJ, Pitts WD, Watkins SF, Baddley WH. J. Chem. Soc., Chem. Commun. 1972; 672
- 6c Song L, Arif AM, Stang PJ. Organometallics 1990; 9: 2792
- 6d Amii H, Ito Y, Murakami M. Nature 1994; 370: 540
- 6e Amii H, Shigeto K, Ito Y, Murakami M. J. Am. Chem. Soc. 1996; 118: 8285
- 6f Takahashi K, Amii H, Ito Y, Murakami M. J. Am. Chem. Soc. 1997; 119: 9307
- 6g Huffman MA, Liebeskind LS. J. Am. Chem. Soc. 1993; 115: 4895
- 6h Ho KY. T, Aïssa C. Chem. Eur. J. 2012; 18: 3486
- 6i Ashida S, Matsuda T, Murakami M. J. Am. Chem. Soc. 2005; 127: 6932
- 6j Kumar P, Zhang K, Louie J. Angew. Chem. Int. Ed. 2012; 51: 8602
- 6k Deng L, Dong G. Trends Chem. 2020; 2: 183
- 7a Chatani N, Ie Y, Kakiuchi F, Murai S. J. Am. Chem. Soc. 1999; 121: 8645
- 7b Jun C.-H, Suggs WJ. J. Am. Chem. Soc. 1986; 108: 4679
- 7c Jun C.-H, Suggs WJ. J. Am. Chem. Soc. 1984; 106: 3054
- 7d Liou SY, van der Boom ME, Milstein D. Chem. Commun. 1998; 687
- 7e Zhu J, Zhang R, Dong G. Nat. Chem. 2021; 13: 836
- 7f Li H, Li Y, Zhang XS, Chen K, Wang X, Shi ZJ. J. Am. Chem. Soc. 2011; 133: 15244
- 7g Qiu Y, Scheremetjew A, Ackermann L. J. Am. Chem. Soc. 2019; 141: 2731
- 8a Wang Y.-F, Xu Y.-J, Chiba S. J. Am. Chem. Soc. 2009; 131: 12886
- 8b Kang JW, Moseley K, Maitlis PS. J. Am. Chem. Soc. 1969; 91: 5970
- 8c Huffman MA, Liebeskind LS. J. Am. Chem. Soc. 1991; 113: 2771
- 8d Yoshikawa S, Aoki K, Kiji J, Furukawa J. Tetrahedron 1974; 30: 405
- 8e Nishimura T, Katoh T, Hayashi T. Angew. Chem. Int. Ed. 2007; 46: 4937
- 9 Kodoi K, Nishinaga E, Okada T, Morisaki Y, Watanabe Y, Kondo T, Mitsudo T. J. Am. Chem. Soc. 1998; 120: 5587
- 10a Hayashi S, Hirano K, Yorimitsu H, Oshima K. J. Am. Chem. Soc. 2006; 128: 2210
- 10b Yorimitsu H, Oshima K. Bull. Chem. Soc. Jpn. 2009; 82: 778 ; and references therein
- 11a Ziadi A, Martin R. Org. Lett. 2012; 14: 1266
- 11b Gutiérrez-Bonet A, Flores-Gaspar A, Martin R. J. Am. Chem. Soc. 2013; 135: 12576
- 11c Ziadi A, Correa A, Martin R. Chem. Commun. 2013; 49: 4286
- 11d Julià-Hernández F, Ziadi A, Nishimura A, Martin R. Angew. Chem. Int. Ed. 2015; 54: 9537
- 11e Cong F, Lyv XY, Day CS, Martin R. J. Am. Chem. Soc. 2020; 142: 20594
- 13 For an interesting study on the fragmentation of amino alcohol radical cations, see: Burton RD, Bartberger MD, Zhang Y, Eyler JR, Schanze KS. J. Am. Chem. Soc. 1996; 118: 5655
- 14a Grob CA, Baumann W. Helv. Chim. Acta 1955; 38: 594
- 14b Grob CA, Kiefer HR, Lutz HJ, Wilkens HJ. Helv. Chim. Acta 1967; 60: 416
- 14c Mölm D, Flörke U, Risch N. Eur. J. Org. Chem. 1998; 2185
- 14d Santaballana JA, Armesto CL, Canle M, García MV. Chem. Soc. Rev. 1998; 27: 453
- 15a Reddy KS, Solà L, Moyano A, Pericàs MA, Riera A. Synthesis 2000; 165
- 15b Pericàs MA, Castellnou D, Rodríguez I, Riera A, Solà L. Adv. Synth. Catal. 2003; 345: 1305
- 15c Osorio-Planes L, Rodríguez-Escrich C, Pericàs MA. Org. Lett. 2012; 14: 1816
- 16a Nishimura T, Uemura S. J. Am. Chem. Soc. 1999; 121: 11010
- 16b Nishimura T, Uemura S. J. Am. Chem. Soc. 2000; 122: 12049
- 16c Reddy KC, Larock CR. Org. Lett. 2000; 2: 3325
- 16d Zhang J, Ma S. Angew. Chem. Int. Ed. 2003; 42: 183
- 16e Matsumura S, Maeda Y, Nishimura T, Uemura S. J. Am. Chem. Soc. 2003; 125: 8862
- 16f Seiser T, Cramer N. J. Am. Chem. Soc. 2010; 132: 5340
- 16g Ziadi A, Martin R. Org. Lett. 2012; 14: 1266
- 16h Ziadi A, Correa A, Martin R. Chem. Commun. 2013; 49: 4286
- 16i Juliá-Hernández F, Ziadi A, Nishimura A, Martin R. Angew. Chem. Int. Ed. 2015; 54: 9537
- 17 Unfortunately, the utilization of E isomers failed to provide even traces of the targeted compound. These results can be rationalized on the basis of steric hindrance between the Pd center and the trans substituent of the homoallylic alcohol at the chairtype transition state required for the retroallylation to occur.
- 18 The utilization of Pd(PPh3)4 resulted in 73% yield of 3a.
- 19 Representative Procedure An oven-dried Schlenk tube containing a stirring bar was charged with 1a (75 mg, 0.234 mmol), Cs2CO3 (1.3 equiv), and 2a (48 mg, 0.234 mmol). The Schlenk tube was then evacuated and backfilled with argon (this sequence was repeated three times). Then, a solution of Pd(OAc)2 (2 mol%) and PPh3 (4 mol%) in THF (1.0 mL) was subsequently added by syringe. The mixture was warmed up to 90 °C and stirred for 12–16 h. Then, AcOEt (10 mL) was added, and the mixture was filtered through a pad of Celite, and the crude was purified by conventional flash chromatography (hexanes/diethyl ether), providing 39.5 mg (85% yield) of 2a as a colorless oil. 1H NMR (400 MHz, CDCl3): δ = 9.75 (t, J = 2.0 Hz, 1 H), 7.84–7.78 (m, 3 H), 7.67–7.64 (m, 1 H), 7.50–7.41 (m, 2 H), 7.40–7.35 (m, 1 H), 3.54 (h, J = 7.0 Hz, 1 H), 2.86 (ddd, J = 16.7, 7.0, 2.0 Hz, 1 H), 2.75 (ddd, J = 16.7, 7.0, 2.0 Hz, 1 H), 1.42 (d, J = 7.0 Hz, 3 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 201.7, 142.8, 133.5, 132.3, 128.4, 127.6, 126.1, 125.5, 125.4, 124.9, 51.6, 34.3, 22.1 ppm.
- 20 See the Supporting Information for details.
For selected reviews on cross-electrophile coupling reactions, see:
For selected reviews on C–H functionalization, see:
For selected reviews on C–C functionalization, see:
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected references, see:
For selected references, see:
In our group, we have observed that 1,2-amino alcohols might undergo unproductive C–C bond fragmentation under basic conditions. For some examples, see:
For selected references, see: