CC BY-NC-ND 4.0 · Laryngorhinootologie 2022; 101(S 01): S36-S78
DOI: 10.1055/a-1731-9321
Referat

Cochlea-Implantation: Konzept, Therapieergebnisse und Lebensqualität

Article in several languages: deutsch | English
T. Lenarz
1   Hals-Nasen-Ohrenklinik der Medizinischen Hochschule Hannover
,
A. Büchner
1   Hals-Nasen-Ohrenklinik der Medizinischen Hochschule Hannover
,
A. Illg
1   Hals-Nasen-Ohrenklinik der Medizinischen Hochschule Hannover
› Author Affiliations

Zusammenfassung

Cochlea-Implantate stellen heute eine unverzichtbare Methode zur auditiven Rehabilitation hochgradig hörgeschädigter Patienten dar. Durch die rasante Entwicklung der Implantat-technologie haben sich die Hörergebnisse erheblich verbessert, ca 80% der Patienten können telefonieren und Kinder erreichen eine nahezu normale Hör- und Sprachentwicklung. Das hat zu einer Indikationsausweitung hin zu Patienten mit Hochtontaubheit und einseitiger Taubheit geführt. Zur Zeit sind aber nur etwa 60 000 der ca 1 Million CI-Kandidaten implantiert. Zukünftig werden multimodale universelle Hörimplantate für die kombinierte elektro-mechanische Stimulation zur Verfügung stehen, die fortlaufend eine Anpassung der Stimulationsstrategie an den jeweiligen Funktionszustand von Haarzellen und Hörnerven auch bei progredienter Schwerhörigkeit ermöglichen. Brain-Computer-Interfaces erlauben die automatisierte Anpassung an die Hörsituation und eine Optimierung der Signalverarbeitung zur Erzielung eines bestmöglichen Hörvermögens. Binaurale Hörsysteme erlauben eine Verbesserung von Richtungshören und Hören im Störgeräusch. Advanced Implants besitzen additiv gefertigte individualisierte Elektroden, die sich nach atraumatischer robotisch assistierter Insertion aktiv der Anatomie der Cochlea anpassen. Sie sind in Abhängigkeit von der Pathophysiologie mit integrierten biologischen Komponenten ausgestattet, unterstützen die Erhaltung des Restgehörs und ermöglichen die Regeneration neuraler Elemente zur Verbesserung der Elektroden-Nerven-Schnittstelle. Dadurch lassen sich die heutigen grundsätzlichen Grenzen der CI-Technologie überwinden und in Richtung des physiologischen Gehörs verschieben. Das Bionische Ohr ist somit in Reichweite. Durch konsequente Weiterentwicklung mit Vereinfachung der Versorgung, hörerhaltender Implantation unter Lokal-Anästhesie und Anwendung robotischer Systeme werden zukünftig mehr Patienten von dem neuen physiologischen Hören profitieren.



Publication History

Article published online:
23 May 2022

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literaturverzeichnis

  • 1 Lenarz T. Cochlear Implant – State of the Art. Laryngo-Rhino-Otologie 2017; 96: S123-S151
  • 2 Deutsche Gesellschaft für Hals-Nasen-Ohren-Heilkunde, Kopf- und Hals-Chirurgie. S2k-Leitlinie „Cochlea-Implantat-Versorgung“, 2020. AWMF-Register-Nr. 017/071
    • Kapitel Technologie

    • 3 Büchner A, Gärtner L. Technische Entwicklungen bei Cochlea-Implantaten. Stand der Technik. HNO 2017; 65: 276-289
    • 4 O´Leary SO, Briggs R, Gerard JM, Iseli C, Wei BPC, Tari S, Rousset A, Bester C. Intraoperative observational real-time electrocochleography as a predictor of hearing loss after cochlear implantation: 3 and 12 month outcomes. Otol Neurotol 2020; 41: 1222-1229
    • 5 Lenarz T, Büchner A, Gantz B, Hansen M, Tejani VD, Labadie R, O´Connell B, Buchman CA, Valenzuela CV, Adunka OF, Harris MS, Riggs WJ, Fitzpatrick D, Koka K. Relationship between intraoperative electrocochleography and hearing preservation. Otol Neurotol 2022; 43: e72-e78
    • 6 Wesarg T, Arndt S, Aschendorff A, Laszig R, Beck R, Jung L, Zirn S. Intra- und postoperative elektrophysiologische Diagnostik. HNO 2017; 65: 308-320
    • 7 Gärtner L, Klötzer K, Lenarz T, Scheper V. Correlation of electrically evoked compound action potential amplitude growth function slope and anamnestic parameters in cochlear implant patients – identification of predictors for the neuronal health status. Life 2021; 11: 203
    • 8 Helmstädter V, Lenarz T, Erfurt P, Kral A, Baumhoff P. The summating potential is a reliable marker of electrode position in electroccochleography: Cochlear Implant as a theragnostic probe. Ear Hear 2018; 39: 687-700
    • 9 Zwicker E, Leysieffer H, Dinter K. Ein Implantat zur Reizung des Nervus acusticus mit zwölf Kanälen. Laryng Rhino Otol 1986; 65: 109-113
    • 10 Büchner et al. Clinical evaluation of cochlear implant sound coding taking into account conjectural masking functions, MP3000. Cochlear Implants Int 2011; 12: 194-204
    • 11 Durisin M, Büchner A, Lesinski-Schiedat A. et al. Cochlear implantation in children with bacterial meningitic deafness: the influence of the degree of ossification and obliterationon impedance and charge of the implant. Cochlear Implants Int 2015; 16: 147-158
      • Kapitel Diagnostik und Indikation

      • 12 Grimm G, Herzke T, Berg D, Hohmann V. The Master Hearing Aid: A PC-based platform for algorithm development and evaluation. Acta acustica 2006; 92: 618-628
      • 13 Lin FR, Yaffe K, Jin X. et al. Hearing loss and cognitive decline in older adults. Jama Intern Med 2013; 173: 293-299
      • 14 Haumann S. et al. Indication criteria for cochlear implants and hearing aids: impact of audiological and non-audiological findings. Audiol Res 2012; 2: e12
      • 15 Santarelli R, Rossi R, Scimemi P. et al. OPA1-related auditory neuropathy: site of lesion and outcome of cochlear implantation. Brain. 2015; 138: 563-576
      • 16 Würfel W, Lanfermann H, Lenarz T, Majdani M. et al. Cochlear length determination using Cone Beam Computed Tomography in a clinical setting. Hear Res 2014; 316: 65-72
      • 17 Keilmannn A. et al. 2012 Funktionelle Kernspintomographie (fMRT) in der Hördiagnostik. 29. Wiss. Jahrestagung Dt. Gesellschaft Phoniatrie Pädaudiologie. GMS Publishing House 2012 Doc12dgppV2
      • 18 Saliba J, Bortfeld H, Levitin DJ, Oghalai JS. Functional near-infrared spectroscopy for neuroimaging in cochlear implant recipients. Hear Res 2016; 338: 64-75
      • 19 Burke W, Lenarz T, Maier H. Hereditäre Schwerhörigkeit. HNO 2013; 61: 352-363
      • 20 Burke W, Lenarz T, Maier H. Hereditäre Schwerhörigkeit. Syndrome. HNO 2014; 62: 759-769
      • 21 Schmidt HA, Pich A, Prnezler K. et al. Personalized proteomics for precision diagnostics in hearing loss: disease-specific analysis of human perilymph by mass spectrometry. ACS Omega 2021; 13: 21241-21254
      • 22 Buchman CA, Gifford RH, Haynes DS, Lenarz T. et al. Unilateral cochlear implants for severe, profound, or moderate sloping to profound bilateral sensorineural hearing loss: a systematic review and consensus statements. JAMA Otolaryngol Head Neck Surg 2020; 146: 942-953
      • 23 Büchner A, Illg A, Majdani O, Lenarz T. Investigation of the effect of cochlear implant electrode length on speech comprehension in quiet and noise compared with the results with users of electro-acoustic-stimulation, a retrospective analysis. PLoS One 2017; 12: e0174900
      • 24 Schurzig D, Timm ME, Batsoulis C. et al. A novel method for clinical cochlear duct length estimation toward patient-specific cochlear implant selection. Oto open 2018; 2 2473974×18800238
      • 25 Timm ME, Majdani O, Weller T. et al. Patient specific selection of lateral wall cochlear implant electrodes based on anatomical indication ranges. PLos One 2018; 13: e0206435
      • 26 von Ilberg C, Kiefer J, Tillein J. et al. Electro-acoustic stimulation of the auditory system. New technology for severe hearing loss. ORL J Otorhinolaryngol Relat Spec 1999; 61: 334-340
      • 27 Gantz BJ, Turner CW. Combining acoustic and electric hearing. Laryngoscope 2003; 113: 1726-1730
      • 28 Lenarz T, James C, Cuda D. et al. European multi-center study of the Nucleus Hybrid L24 cochlear implant. Int J Audiol 2013; 52: 838-848
      • 29 Jurawitz MC, Büchner A, Harpel T, Schüssler M, Majdani O, Lesinski-Schiedat A, Lenarz T. Hearing preservation outcomes with different cochlear implant electrodes. Audiol Neurotol 2014; 19: 293-309
      • 30 Suhling MC, Majdani O, Salcher R, Leifholz M, Büchner A, Lesiinski-Schiedat A, Lenarz T. The impact of electrode array length on hearing preservation in cochlear implantation. Otol Neurotol 2016; 37: 1006-1016
      • 31 Avci E, Nauwelaers T, Lenarz T, Hamacher V, Kral A. Variations in microanatomy oft he human cochlea. J Comp Neurol 2014; 522: 3245-3261
      • 32 Lenarz T, Büchner A, Lesinski-Schiedat A, Timm M, Salcher R. Hearing preservation with a new atraumatic lateral wall electrode. Otol Neurotol 2020; 41: e993-e1003
      • 33 Lenarz T, Timm ME, Salcher R, Büchner A. Individual hearing preservation cochlear implantation using the concept of partial insertion. Otol Neurotol 2019; 40: e326-e335
        • Kapitel Implantation

        • 34 Lenarz T. Cochlear Implantation. The Hannover Guideline. Tuttlingen: Endo Press,; 2006
        • 35 Kronenberg J, Migirov L, Dagan T. Suprameatal approach: new surgical approach for cochlear implantation. J Laryngol Otol 2001; 115: 283-285
        • 36 Henslee AM, Kaufmann CR, Andrick MD. et al. Development and characterization of an electrocochleography-guided robotics-assisted cochlear implant array insertion system. Otol Head Neck Surg 2021;
        • 37 Daoudi H, Lahlou G, Torres R. et al. Robot-assisted cochlear implant electrode array insertion in adults: a comparative study with manual insertion. Otol Neurotol 2021; 42: e438-e444
        • 38 Majdani O, Rau TS, Baron S. et al. A robot-guided minimally invasive approach for cochlear implant surgery. Int Journal of Computer Assisted Radiology and Surgery 2009; 4: 475-486
        • 39 Choudhury B, Fitzpatrick DC, Buchman CA. et al. Intra-operative round window recordings to acoustic stimuli from cochlear implant patients. Otol Neurotol 2012; 33: 1507-1515
        • 40 Radeloff A, Shehata-Dieler W, Scherzed A. et al. Intraoperative monitoring using cochlear microphonics in cochlear implant patients with residual hearing. Otol Neurotol 2012; 33: 348-354
        • 41 O´Leary SO, Briggs R, Gerard JM, Iseli C, Wei BPC, Tari S, Rousset A, Bester C. Intraoperative observational real-time electrocochleography as a predictor of hearing loss after cochlear implantation: 3 and 12 month outcomes. Otol Neurotol 2020; 41: 1222-1229
        • 42 Suntinger K, Huber A, Röösli C. et al. Implications of phase change in extracochlear electrocochleoraphic recordings during cochlear implantation. Otol Neurotol 2021;
        • 43 Dietz A, Lenarz T. Cochlear Implantation under local anesthesia in 117 cases: patients´ subjective experience and outcome. Eur Arch Otorhinolaryngol 2021; 278: 1-7
        • 44 Connors JR, Deep NL, Huncke TK, Roland JT. Cochlear Implantation under local anesthesia with conscious sedation in the elderly: first 100 cases. Laryngoscope 2021; 131: e946-e951
        • 45 Kontorinis G, Lenarz T, Stöver S, Paasche G. Impact of insertion speed of cochlear implant electrodes on the insertion forces. Otol Neurotol 2011; 32: 565-570
        • 46 Zuniga MG, Hügl S, Engst BG, Lenarz T, Rau T. The effect of ultra-slow velocities on insertion forces: a study using highly flexible straight electrode array. Otol Neurotol 2021; 42: e1013-e1021
        • 47 Labadie RF, Balachandran R, Noble JH. et al. Minimally invasive image-guided cochlear implantation surgery: First report of clinical implementation. Laryngoscope 2014; 124: 1915-1922
        • 48 Caversaccio M, Gavaghan K, Wimmer W. et al. Robotic cochlear implantation: surgical procedure and first clinical experience. Acta Oto-Laryngologica 2017; 137: 447-454
        • 49 Rau T, Zuniga G, Salcher R, Lenarz T. A simple tool to automate the insertion process in cochlear implant surgery. In J Computer Ass Radiol Surg 2020; 15: 1931-1939
        • 50 Hellingman CA, Dunnebier EA. Cochlear implantation in patients with acute and chronic middle ear infectious disease: A review of the literature. Eur Arch Otorhinolaryngol 2008; 266: 171-176
        • 51 Issing PR, Schönermark MP, Kempf HG, Ernst A, Lenarz T. Cochlear implantation in patients with chronic otitis: indications for subtotal petrosectomy and obliteration of the middle ear. Skull Base Surgery 1998; 8: 127-131
        • 52 Free RH, Falcioni M, Di Trapani G. et al. (2013) The role of subtotal petrosectomy in cochlear implant surgery – a report of 32 cases and review of indications. Otol Neurotol 2013; 34: 1033-1040
        • 53 Sennaroglu L. Saatci A new classification for cochleovestibular malformations. Laryngoscope 2003; 112: 2230-2241
        • 54 Sennaroglu L. Cochlear implantation in inner ear malformations – a review article. Cochlear Implants International 2010; 11: 4-41
        • 55 Weber B, Lenarz T, Dahm M. et al. Cochlear implantation in children with malformation of the cochlea. Adv Otorhinolaryngol 1995; 50: 59-65
        • 56 Lenarz T, Lim H, Joseph G. et al. Zentral-auditorische Implantate. HNO 2009; 57: 551-562
        • 57 Farhood Z, Nguyen SA, Miller SC. et al. Cochlear implantation in inner ear malformations: systemic review of speech perception outcomes and intraoperative findings. Otolaryngol Head Neck Surg 2017; 156: 783-793
        • 58 Fenov L, Warnecke A, Salcher R. et al. Cochlear implantation in otosclerosis: functional, technical, radiological and surgical aspects. Laryngo-Rhino-Otol 2020; 99 So2: S257-S258
        • 59 Lenarz T, Lesinski-Schiedat A, Weber BP. et al. The Nucleus double array cochlear implant: a new concept for the obliterated cochlea. Otol Neurotol 2001; 22: 24-32
        • 60 Pires JS, Melo AS, Caiado R. et al. Facial nerve stimulation after cochlear implantation: our experience in 448 adult patients. Cochlear implants international 2018; 19
        • 61 Battmer R, Pesch J, Stöver S. et al. Elimination of facial nerve stimlation by reimplantation in cochlear implant subjects. Otol Neurotol 2006; 27: 918-922
        • 62 Gärtner L, Lenarz T, Ivanauskaite J, Büchner A. Facial nerve stimulation in cochlear implant users – a matter of stimulus parameters?. Cochlear implants Int 2022; 23
        • 63 Plontke SK, Caye-Thomasen P, Strauss C. et al. Management transmodiolärer und transmakulärer Vestibularis und Cochlearisschwannome mit und ohne Cochleaimplantation. HNO 2020; 68: 734-748
        • 64 Lenarz T, Lim H, Joseph G. et al. 2009; Zentral-auditorische Implantate. HNO 57: 551-562
        • 65 Heman-Ackah SE, Roland JT, Haynes DS, Waltzmann SB. Pediatric cochlear implantation: candidacy evaluation, medical and surgical considerations, an expanding criteria. Otolaryngologic Clinics 2012; 45: 41-67
        • 66 Loundon N, Blanchard M, Roger G. et al. Medical and surgical complications in pediatric cochlear implantation. Arch Otolaryngology, Head Neck Surg 2010; 136: 12-15
        • 67 Stolle SR, Groß S, Lenarz T, Lesinski-Schiedat A. Postoperative Früh- und Spätkomplikationen bei Kindern und Erwachsenen mit Cochlea-Implantat. Laryngo-Rhino-Otol 2014; 93: 605-611
        • 68 Reis R, Boisvert I, Looi V. et al. Speech recognition outcomes after cochlear reimplantation surgery. Trends Hear 2017; 21
        • 69 Wang JT, Wang AY, Psamos C, DaCruz M. Rates of revision and device failure in cochlear implant surgery: A 30 year experience. Laryngoscope 2014; 124: 2393-2399
        • 70 Hwang CF, Ko HC, Tsou TY. et al. Comparisons of auditory performance and speech intelligibility after cochlear reimplantation in mandarin-speaking users. Biomed Res Int. 2016; Article ID 8962180
        • 71 Roßberg W, Timm M, Matin F. et al. First results of electrode reimplantation and its hypothetical dependence from artificial brain maturation. Eur Arch Otorhinolaryngol 2021; 278: 951-958
        • 72 European consensus statement on cochlear implant failures and explantations. Otol Neurotol 2005; 26: 1097-1099
        • 73 Gärtner L, Büchner A, Illg A, Lenarz T. Hidden electrode failure in a cochlear implant user. Laryngoscope 2021; 131: e1275-e1278
        • 74 Battmer RD, Linz B, Lenarz T. A review of device failure in more than 23 years of clinical experience of a cochlear implant program with more than 3400 implantees. Otol Neurotol 2009; 30: 455-463
        • 75 Battmer RD, O’Donoghue G, Lenarz T. A multicenter study of device failure in European cochlear implant centers. Ear Hear 2007; 28: 95S-99S
        • 76 Battmer RD, Backous D, Balkany T. et al. International classification of reliability for implanted cochlear implant receiver stimulators. Otol Neurotol 2010; 31: 1190-1193
        • 77 Kempf HG, Johann K, Lenarz T. Complications in pediatric cochlear implant surgery. Eur Arch Otorhinolaryngol 1999; 256: 128-132
        • 78 Miyamoto R, Young M, Myres WA. et al. Complications of pediatric cochlear implantation. Eur Arch ORL 1996; 253: 1-4
        • 79 Cohen NL, Hoffman AA. Complications of cochlear implant surgery in adults and children. New England Journal Med 2003; 249: 435-445
        • 80 Thom JJ, Carlson ML, Olson MD, Neff BA, Beatty CW, Facer GW, Driscoll CLW. The prevalence and clinical course of facial nerve paresis following cochlear implant surgery. Laryngoscope 2013; 123: 1000-1004
        • 81 Matin F, Krüger C, Avallone E. et al. Influence of the electrode array design on incidence of vertigo symptoms and vestibular function after cochlear implantation. Ear Nose Throat J 2021; 28
        • 82 Cunningham CD, Slattery WH, Luxford WM. Postoperative infection in cochlear implant patients. Otolaryngology Head Neck Surg 2004; 131: 109-114
        • 83 Kanaan N, Winkel A, Stumpp N, Stiesch M, Lenarz T. Bacterial growth on cochlear implants as a potential origin of complications. Otol Neurotol 2013; 34: 539-543
        • 84 O’Donoghue G, Balkany T, Cohen N, Lenarz T. et al. Meningitis and cochlear implantation. Otol Neurotol 2002; 23: 823-824
          • Kapitel Anpassung und Hörsprachtraining

          • 85 Hoppe U, Liebscher T, Hornung J. Anpassung von Cochleaimplantsystemen. HNO 2017; 65: 546-551
          • 86 Finke M, Billinger M, Büchner A. Toward automated cochlear implant fitting procedures based on even-related potentials. Ear Hearing 2017; 38: e118-e127
          • 87 Vaerenberg B, Smits C, De Ceulaer G. et al. Cochlear implant programming: A global survey on the state of the art. The Scientific World Journal 2014;
          • 88 Bauernfeind G, Wriessnegger S, Haumann S, Lenarz T. Cortical activation patterns to spatially presented pure tone stimuli with different intensities measured by functional near-infrared spectroscopy. Hum Brain Mapp 2018; 39: 2710-2724
          • 89 Nogueira W, Cosatti G, Schierholz I. et al. Toward decoding selective attention from single-trial EEG data in cochlear implant users. IEEE Trans Biomed Eng 2020; 67: 38-49
          • 90 Illg A. Rehabilitation bei Kindern und Erwachsenen. HNO 2017; 65: 552-560
          • 91 Illg A. Hörtraining und Hörerziehung. In: Leonhardt A, Kaul T. Grundbegriffe der Hörgeschädigtenpädagogik. Ein Handbuch. Stuttgart: Kohlhammer; 2021
          • 92 Battmer RD, Borel S, Brendel M, Büchner A. et al. Assessment of fitting to outcomes expert FOX with new cochlear implant users in a multi-centre study. Cochlear Implants international 2015; 16: 100-109
          • 93 Cullington H, Kitterick P, Weal M, Margol-Gromada M. Feasibility of personalized remote long-term follow-up of people with cochlear implants: a randomized controlled trial. BMJ open 2018; 8: e019640
          • 94 Luryi A, Tower JI, Preston J, Burkland A, Trueheart CE, Hildrew DM. Cochlear implant mapping through telemedicine a feasibility study. Otol Neurotol 2020; 41: e330-e333
          • 95 Zeh R, Baumann U. Stationäre Rehabilitationsmaßnahme bei erwachsenen CI-Trägern. HNO 2015; 63: 557-576
          • 96 Archbold S, Lutman ME, Marshall DH. Categories of Auditory Performance. Ann Otol Rhinol Laryngol 1995; Suppl 166: 312-314
            • Kapitel Ergebnisse

            • 97 Holden LK, Finley CC, Firszt J. et al. Factors affecting open-set word recognition in adults with cochlear implants. Ear Hear 2013; 34: 342-360
            • 98 Cusumano C, Friedman DR, Fang Y. et al. Performance plateau inprelingually and postlingually deafened adult cochlear implant recipients. Otol Neurotol 2017; 38: 334-338
            • 99 Krüger B, Joseph G, Rost U. et. al. Performance groups in adult cochlear implant users: speech perception results from 1984 until today. Otol Neurotol 2008; 29: 509-512
            • 100 Ramekers D, Versnel H, Grolman W. Auditory-nerve responses to varied inter-phase gap and phase duration of the electric pulse stimulus as predictors for neuronal degeneration. J Assoc Res Otolaryngol 2014; 15: 187-202
            • 101 Lin FR, Chin WW. et al. Cochlear implantation in older adults. Medicine 2012; 91: 229-241
            • 102 Loughry DG, Kelly ME, Kelley GA. et al. Association of age-related hearing loss with cognitive function, cognitive impairment, and dementia. A systematic review and meta-analysis. JAMA Otolaryngol Head Neck Surg 2018; 144: 115-126
            • 103 Huber M, Roesch S, Pletzer B, Lukaschyk J, Lesinski-Schiedat A, Illg A. Can Cochlear Implantation in Older Adults Reverse Cognitive Decline Due to Hearing Loss? Ear & Hearing. 2021 May 11. von Ilberg C, Kiefer J, Tillein J et al. Electro-acoustic stimulation of the auditory system. New technology for severe hearing loss. ORL J Otorhinolaryngol Relat Spec 1999; 61: 334-340
            • 104 Brown CA, Bacon SP. Low-frequency speech cues and simulated electric-acoustic hearing. J. Acoustic. Soc. Am. 2009; 125: 1658-1665
            • 105 Ching TYC, Incerti P, Hill M. Binaural benefits for adults who use hearing aids and cochlear implants in opposite ears. Ear & Hearing 2004; 25: 9-21
            • 106 Chang JE, Bai JY, Zeng FG. Unintelligible low-frequency sound enhances simulated cochlear-implant speech recognition in noise. IEEE Trans Biomed Eng 2006; 53: 2598-2601
            • 107 Sheffield BJ, Zeng FG. The relative phonetic contributions of a cochlear implant and residual acustic hearing to bimodal speech perception. J. Acoust. Soc. Am. 2012; 131: 518-530
            • 108 Büchner A, Schüssler M, Battmer RD, Stöver T, Lesinski-Schiedat A, Lenarz T. Impact of Low-Frequency Hearing. Audiology Neurotol 2009; 14: 8-13
            • 109 Dorman MF, Spahr T, Gifford F, Loiselle L, McKarns S, Holden T, Skinner M, Finley C. An electric frequency-to-place map for a cochlear implant patient with hearing in the nonimplanted ear. J Assoc Res Otolaryngol 2007; 8: 234-240
            • 110 Illg A, Bojanowicz M, Lesinski-Schiedat A, Lenarz T, Büchner A. Evaluation of the Bimodal Benefit in a Large Cohort of Cochlear Implant Subjects Using a Contralateral Hearing Aid. Otol Neurotol 2014; 35: e240-e244
            • 111 Tropitzsch A, Schade-Mann T, Gamerdinger P. et al. Diagnostic yield of targeted hearing loss gene panel sequencing in a large german cohort with a balanced age distribution from a single diagnostic center: an eight-year study. Ear Hear 2021;
            • 112 Arndt S, Aschendorff A, Laszig R. et al. Comparison of pseudobinaural hearing to real binaural hearing rehabilitation after cochlear implantation in patients with unilateral deafness and tinnitus. Otol Neurotol 2011; 32: 39-47
            • 113 Büchner A, Brendel M, Lesinski-Schiedat A, Wenzel G, Frohne-Büchner C, Jaeger B, Lenarz T. Cochlear implantation in unilateral deaf subjects associated with ipsilateral tinnitus. Otol Neurotol 2010; 31: 1381-1385
            • 114 Hansen MR, Gantz BJ, Dunn C. Outcomes following cochlear implantation for patients with single-sided deafness, including those with recalcitrant Ménière’s disease. Otol. Neurotol 2013; 34
            • 115 Gordon K, Henkin Y, Kral A. Asymmetric Hearing During Development: The Aural Preference Syndrome and Treatment Options. Pediatrics 2015; 136: 141-153
            • 116 Mertens G, De Bodt M, Van de Heyning P. Cochlear implantation as a long-term treatment for ipsilateral incapacitating tinnitus in subjects with unilateral hearing loss up to 10 years. Hear. Res 2016; 331: 1-6
            • 117 Finke M, Strauß-Schier A, Kludt E, Büchner A, Illg A. Speech intelligibility and subjective benefit in single-side deaf adults after cochlear implantation. Hearing Research 2017; 348: 112-119
            • 118 Laske RD, Röösli C, Pfiffner F, Veraguth D, Huber AM. Functional results and subjective benefit of a transcutaneous bone conduction device in patients with single-sided deafness. Otol. Neurotol. 2015; 36: 1151e1156
            • 119 Lesinski-Schiedat A, Illg A, Warnecke A, Heermann R, Bertram B, Lenarz T. Kochleaimplantation bei Kindern im 1. Lebensjahr. Vorläufige Ergebnisse. HNO 2006; 54: 565-572
            • 120 Kral A, Kronenberger WG, Pisoni DB, O´Donoghue G. Neurocognitive factors in sensory restoration of early deafness: a connectome model. Lancet Neurol 2016; 15: 610-621
            • 121 Wanna GB, Gifford RH, McRackan TR. et al. Bilateral cochlear implantation. Otolaryngol Clin North Am 2012; 45: 81-89
            • 122 Schulze-Gattermann H, Illg A, Schönermark M. et al. Cost-benefit analysis of pediatric cochlear imlantation: German experience. Otol Neurotol 2002; 23: 674-681
            • 123 Illg A, Haack M, Lesinski-Schiedat A, Büchner A, Lenarz T. Long-Term Outcomes, Education, and Occupational Level in Cochlear Implant Recipients Who Were Implanted in Childhood. Ear Hear 2017; 38: 577-587
            • 124 Lenarz T, Reuter G, Buser K, Altenhofen L. Modellprogramm Verbesserung der Früherfassung von Hörstörungen im Kindesalter. Wissenschaftliche Reihe des Zentralinstituts für die Kassenärztliche Vereinigung in der Bundesrepublik Deutschland. Köln: Deutscher Ärzte-Verlag; 2007
            • 125 Gemeinsamer Bundesausschuss. Neugeborenen-Hörscreening. 2008
            • 126 Illg A, Giourgas A, Kral A, Büchner A, Lesinski-Schiedat A, Lenarz T. Speech comprehension in children and adolescents after sequential bilateral cochlear implantation with long interimplant interval. Otol. Neurotol. 2013; 34: 682e689
            • 127 Nelson PB, Jin SH, Carney AE, Nelson DA. Understanding speech in modulated interference: cochlear implant users and normal-hearing listeners. Journal of the Acoustical Society of America 2003; 113: 961-968
            • 128 Pasanisi E, Bacciu A, Vincenti V, Guida M, Berghenti MT, Barbot A, Panu F, Bacciu S. Comparison of speech perception benefits with SPEAK and ACE coding strategies in pediatric Nucleus cochlear implant24M cochlear implant recipients. International Journal of Pediatric Otorhinolaryngology 2002; 64: 159-163
            • 129 Stickney GFG, Litovsky RY, Assman P. Cochlear implant speech recognition with speech maskers. Journal of the Acoustical Society of America 2004; 116: 1081-1091
            • 130 Kollmeier B. Versorgung und Rehabilitation mit Hörgeräten. 1997. Georg Thieme Verlag; Stuttgart-New York:
            • 131 Illg A, Sandner C, Büchner A, Lenarz T, Kral A, Lesinski-Schiedat A. The Optimal Inter-Implant Interval in Pediatric Sequential Bilateral Implantation. Hearing Research. 2017 pii: S0378-5955(17)30274-5.
              • Kapitel Lebensqualität

              • 132 International Classification of Functioning, Disability and Health © World Health Organization 2001
              • 133 Holch P, Absolom K, Brooke C, Wang X. (2020). Advances in Patient Reported Outcomes: Integration and Innovation. Journal of Patient-Reported Outcomes 2020; 4: 28
              • 134 Mercieca-Bebber R, King MT, Calvert MJ, Stockler MR, Friedlander M. (2018). The importance of patient-reported outcomesin clinical trials and strategies for future optimization. Patient Relat Outcome Meas 2018; 9: 353-367
              • 135 Bansal D, Bhagat A, Schifano F, Gudala K. (2015). Role of patient-reported outcomes and other efficacy endpoints in the drug approval process in Europe (2008-2012). J Epidemiol Glob Health 2015; 5: 385-395
              • 136 Rivera SC, Kyte DG, Aiyegbusi OL, Slade AL, McMullan C, Calvert MJ. The impact of patient-reported outcome (PRO) data from clinical trials: a systematic review and critical analysis. Health and Quality of Life Outcomes 2019; 17: 156
              • 137 Rudolph C, Petersen GS, Pritzkuleit R, Storm H, Katalinic A. The acceptance and applicability of a patient-reported experience measurement tool in oncological care: a descriptive feasibility study in northern Germany. BMC Health Services Research 2019; 19: 786
              • 138 Squitieri L, Bozic KJ, Pusic AL. The Role of Patient-Reported Outcome Measures in Value-Based Payment Reform. Value Health 2017; 20: 834-836
              • 139 Ambert-Dahan E, Laouénan C, Lebredonchel M, Borel S, Carillo C, Bouccara D, Mosnier I. (2018). Evaluation of the impact of hearing loss in adults: Validation of a quality of life questionnaire. Eur Ann Otorhinolaryngol Head Neck Dis 2018; 135: 25-31
              • 140 Gatehouse S, Noble W. The Speech, Spatial and Qualities of Hearing Scale (SSQ). Int J Audiol 2004; 43: 85-99
              • 141 Hinderink JB, Krabbe PF, Van Den Broek P. Development and application of a health-related quality-of-life instrument for adults with cochlear implants: the Nijmegen cochlear implant questionnaire. Otolaryngol Head Neck Surg 2000; 123: 756-765
              • 142 Kompis M, Pfiffner F, Krebs M, Caversaccio MD. (2011). Factors influencing the decision for Baha in unilateral deafness: the Bern benefit in single-sided deafness questionnaire. Adv Otorhinolaryngol 2011; 71: 103-111
              • 143 Newman CW, Jacobson GP, Spitzer JB. Development of the Tinnitus Handicap Inventory. Arch Otolaryngol Head NeckSurg 1996; 122: 143-148
              • 144 Noble W, Jensen NS, Naylor G, Bhullar N, Akeroyd MA. A short form of the Speech, Spatial and Qualities of Hearing scale suitable for clinical use: the SSQ12. Int J Audiol 2013; 52: 409-412
              • 145 Umansky AM, Jeffe DB, Lieu JE. The HEAR-QL: quality of life questionnaire for children with hearing loss. J Am Acad Audiol 2011; 22: 644-653
              • 146 Hinderink JB, Krabbe PF, Van Den Broek P. Development and application of a health-related quality-of-life instrument for adults with cochlear implants: the Nijmegen cochlear implant questionnaire. Otolaryngol Head Neck Surg 2000; 123: 756-765
              • 147 Gatehouse S, Noble W. The Speech, Spatial and Qualities of Hearing Scale (SSQ). Int J Audiol 2004; 43: 85-99 Retrieved from
              • 148 Noble W, Jensen NS, Naylor G, Bhullar N, Akeroyd MA. A short form of the Speech, Spatial and Qualities of Hearing scale suitable for clinical use: the SSQ12. Int J Audiol 2013; 52: 409-412
              • 149 Amann E, Anderson I. Development and validation of a questionnaire for hearing implant users to self-assess their auditory abilities in everyday communication situations: the Hearing Implant Sound Quality Index (HISQUI19). Acta Otolaryngol 2014; 134: 915-923
              • 150 Aiello CP, de L, Ferrari DV. Validity and reliability of the hearing handicap inventory for adults. Braz J Otorhinolaryngol 2011; 77: 432-438
              • 151 Cox RM, Alexander GC. The abbreviated profile of hearing aid benefit. Ear Hear 1995; 16: 176-186 Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/7789669
              • 152 Gatehouse S. (1999). Glasgow Hearing Aid Benefit Profile: Derivation and validation of a client-centered outcome measure for hearing aid services. Journal of the American academy of audiology 1999; 10: 80-103
              • 153 Cox RM, Alexander GC. The International Outcome Inventory for Hearing Aids (IOI-HA): psychometric properties of the English version. Int J Audiol 2002; 41: 30-35 Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/12467367
              • 154 Claes AJ, Mertens G, Gilles A. et al. The repeatable battery for the assessment of neuropsychological status for hearing impaired individuals (RBANS-H) before and after cochlear implantation: A protocol for a prospective, longitudinal cohort study. Front Neurosci 2016; 10: 512
              • 155 Lenarz T, Muller L, Czerniejewska-Wolska H. et al. Patient-related benefits for adults with cochlear implantation: A multicultural longitudinal observational study. Audiol Neurootol 2017; 22: 61-73
              • 156 Knopke S, Olze H. Hearing rehabilitation with cochlear implants and cognitive abilities. HNO. 2018; 66: 364-368
              • 157 Sladen DP, Peterson A, Schmitt M. et al. Health-related quality of life outcomes following adult cochlear implantation: A prospective cohort study. Cochlear Implants Int 2017; 18: 130-135
              • 158 Olze H, Szczepek AJ, Haupt H. et al. Cochlear implantation has a positive influence on quality of life, tinnitus, and psychological comorbidity. Laryngoscope. 2011; 121: 2220-2227
              • 159 Djalilian HR, King TA, Smith SL, Levine SC. Cochlear implantation in the elderly: results and quality-of-life assessment. Ann Otol Rhinol Laryngol 2002; 111: 890-895
              • 160 Aimoni C, Ciorba A, Hatzopoulos S. et al. Cochlear implants in subjects over age 65: Quality of life and audiological outcomes. Med Sci Monit 2016; 22: 3035-3042
              • 161 Mosnier I, Vanier A, Bonnard D. et al. Long-term cognitive prognosis of profoundly deaf older adults after hearing rehabilitation using cochlear implants. J Am Geriatr Soc 2018; 66: 1553-1561
              • 162 Ravens-Sieberer U, Bullinger M. Assessing health related quality of life in chronically ill children with the German KINDL: first psychometric and content-analytical results. Quality of Life Research 1998; 7: 399-407
              • 163 Morettin M, Jaquelinie Dias dos Santos M, Rosolen Stefanini M, de Lourdes Antonio F, Bevilacqua MC, Alves Cardoso MR. Measures of quality of life in children with cochlear implant: systematic review. Braz J Otorhinolaryngol 2013; 79: 382-390
              • 164 Gustke Matthias. et al. ‘Die Fragebögen Disabkids Und Kidscreen – Vergleich Der Änderungssensitivität Bei Der Erfassung Gesundheitsbezogener Lebensqualität von Kindern Und Jugendlichen’ 2011; 51-59
              • 165 Haukedal CL, Lyxell B, Wie OB. Health-Releated Quality of Life with Cochlear Implants: The Children`s Perspective. Ear & hearing 2020; 41: 330-343
              • 166 Gesis (2012). ALLBUS 2012 ALLBUS. Die Allgemeine Bevölkerungsumfrage in den Sozialwissenschaften http://www.gesis.org/allbus/
              • 167 Archbold S, Lutman ME, Marshall DH. Categories of Auditory Performance. Ann Otol Rhinol Laryngol 1995; Suppl 166: 312-314
              • 168 Giourgas A, Illg A, Kludt E, Lenarz T. Und wenn es nicht klappt? – Non-User nach Cochlea-Implantation. 22. CI-Kongress 4.-5.12. 2020. Hannover:
              • 169 Salehomoum M. Cochlear Implant Nonuse: Insight from Deaf Adults. Journal of Deaf Studies and Deaf Education 2020; 270-282
              • 170 Benchetrit L, Ronner EA, Anne S, Cohen MS. Cochlear Implantation in Children with Single-Sided Deafness. A systematic Review and Meta-analysis. JAMA Otolaryngol Head Neck Surg 2021; 147: 58-69
              • 171 Valero MR, Sadadcharam M, Henderson L, Freeman SR, Lloyd S, Kevin M, Green KM, Bruce IT. Compliance with cochlearimplantation in children subsequently diagnosed with autism spectrum disorder. Cochlear Implants Int 2016; 17: 200-206