Synlett 2022; 33(08): 737-753 DOI: 10.1055/a-1740-7139
Conjugated Nanohoops with Dibenzo[a ,e ]pentalenes as Nonalternant and Antiaromatic π-Systems
a
Institute of Organic Chemistry II and Advanced Materials, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany URL:
www.esserlab.com
b
Institute for Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
c
Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, 79104 Freiburg, Germany
d
Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
,
b
Institute for Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
,
b
Institute for Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
› Author Affiliations Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project numbers 230408635, 434040413 and INST 40/467-1 FUGG.
Abstract
Conjugated nanohoops are excellent as candidates for studying structure–property relationships, as optoelectronic materials, and as hosts for supramolecular chemistry. Whereas carbon nanohoops containing aromatics have been well studied, antiaromatic units had not been incorporated until our group recently did so, using dibenzo[a ,e ]pentalene (DBP). The nonalternant electronic character of the DBP units significantly influences the optoelectronic properties of such nanohoops. Here, we summarize our synthetic strategies toward DBP-containing nanohoops, together with their structural and electronic properties, chirality, and host–guest chemistry. We demonstrate how incorporating antiaromatic units leads to unique properties and opens new synthetic avenues, making such nanohoops attractive as potential electronic materials.
1 Introduction
2 Synthesis
3 Structural Properties
4 Electronic Properties
5 Chirality
6 Host–Guest Chemistry
Key words
nanohoops -
antiaromaticity -
ambipolar materials -
chiroptical properties -
cycloparaphenylenes -
fullerene complexes
Publication History
Received: 20 December 2021
Accepted after revision: 14 January 2022
Accepted Manuscript online: 14 January 2022
Article published online: 17 March 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1
Leonhardt EJ,
Jasti R.
Nat. Rev. Chem. 2019; 3: 672
2
Darzi ER,
Jasti R.
Chem. Soc. Rev. 2015; 44: 6401
3
Wu D,
Cheng W,
Ban X,
Xia J.
Asian J. Org. Chem. 2018; 7: 2161
4
Xu Y,
von Delius M.
Angew. Chem. Int. Ed. 2020; 59: 559
5
Parekh VC,
Guha PC.
J. Indian Chem. Soc. 1934; 11: 95
6
Schröder A,
Mekelburger H.-B,
Vögtle F.
Top. Curr. Chem. 1994; 172: 179
7
Lewis SE.
Chem. Soc. Rev. 2015; 44: 2221
8
Chen H,
Miao Q.
J. Phys. Org. Chem. 2020; 33: e4145
9
Gleiter R,
Esser B,
Kornmayer SC.
Acc. Chem. Res. 2009; 42: 1108
10
Segawa Y,
Yagi A,
Itami K.
Phys. Sci. Rev. 2017; 2: 1: DOI: 10.1515/psr-2016-0102
11
Hermann M,
Wassy D,
Esser B.
Angew. Chem. Int. Ed. 2021; 60: 15743
12
Segawa Y,
Ito H,
Itami K.
Nat. Rev. Mater. 2016; 1: 15002
13
Wassy D,
Pfeifer M,
Esser B.
J. Org. Chem. 2020; 85: 34
14
Hermann M,
Wassy D,
Kohn J,
Seitz P,
Betschart MU,
Grimme S,
Esser B.
Angew. Chem. Int. Ed. 2021; 60: 10680
15
Esser B.
Phys. Chem. Chem. Phys. 2015; 17: 7366
16
Wössner JS,
Wassy D,
Weber A,
Bovenkerk M,
Hermann M,
Schmidt M,
Esser B.
J. Am. Chem. Soc. 2021; 143: 12244
17
Wassy D,
Hermann M,
Wössner JS,
Frédéric L,
Pieters G,
Esser B.
Chem. Sci. 2021; 12: 10150
18
Wössner JS,
Kohn J,
Wassy D,
Hermann M,
Grimme S,
Esser B.
Org. Lett. 2022; 24: 983
19
Hopf H.
Angew. Chem. Int. Ed. 2013; 52: 12224
20
Hermann M,
Böttcher T,
Schorpp M,
Richert S,
Wassy D,
Krossing I,
Esser B.
Chem. Eur. J. 2021; 27: 4964
21
Brand K.
Chem. Ber. 1912; 45: 3071
22
Brand K,
Hoffmann FW.
Ber. Dtsch. Chem. Ges. 1920; 53: 815
23
Brand K,
Schläger F.
Ber. Dtsch. Chem. Ges. 1923; 56: 2541
24
Saito M.
Symmetry 2010; 2: 950
25
Imamoto T,
Takiyama N,
Nakamura K,
Hatajima T,
Kamiya Y.
J. Am. Chem. Soc. 1989; 111: 4392
26
Wilbuer J,
Grenz DC,
Schnakenburg G,
Esser B.
Org. Chem. Front. 2017; 4: 658
27
Grenz DC,
Schmidt M,
Kratzert D,
Esser B.
J. Org. Chem. 2018; 83: 656
28
Kawase T,
Fujiwara T,
Kitamura C,
Konishi A,
Hirao Y,
Matsumoto K,
Kurata H,
Kubo T,
Shinamura S,
Mori H,
Miyazaki E,
Takimiya K.
Angew. Chem. Int. Ed. 2010; 49: 7728
29
Dai G,
Chang J,
Zhang W,
Bai S,
Huang K.-W,
Xu J,
Chi C.
Chem. Commun. 2015; 51: 503
30
Dai G,
Chang J,
Shi X,
Zhang W,
Zheng B,
Huang K.-W,
Chi C.
Chem. Eur. J. 2015; 21: 2019
31
Liu C,
Xu S,
Zhu W,
Zhu X,
Hu W,
Li Z,
Wang Z.
Chem. Eur. J. 2015; 21: 17016
32
Nakano M,
Osaka I,
Takimiya K.
J. Mater. Chem. C 2015; 3: 283
33
Li C,
Liu C,
Li Y,
Zhu X,
Wang Z.
Chem. Commun. 2015; 51: 693
34
Dai G,
Chang J,
Jing L,
Chi C.
J. Mater. Chem. C 2016; 4: 8758
35
Sekine K,
Schulmeister J,
Paulus F,
Goetz KP,
Rominger F,
Rudolph M,
Zaumseil J,
Hashmi AS. K.
Chem. Eur. J. 2019; 25: 216
36
Yin F,
Wang L,
Yang X,
Liu M,
Geng H,
Liao Y,
Liao Q,
Fu H.
New J. Chem. 2020; 44: 17552
37
Hermann M,
Wu R,
Grenz DC,
Kratzert D,
Li H,
Esser B.
J. Mater. Chem. C 2018; 6: 5420
38
Konishi A,
Okada Y,
Nakano M,
Sugisaki K,
Sato K,
Takui T,
Yasuda M.
J. Am. Chem. Soc. 2017; 139: 15284
39
Kawase T,
Nishida J.-i.
Chem. Rec. 2015; 15: 1045
40
Konishi A,
Horii K,
Iwasa H,
Okada Y,
Kishi R,
Nakano M,
Yasuda M.
Chem. Asian J. 2021; 16: 1553
41
Oshima H,
Fukazawa A,
Yamaguchi S.
Angew. Chem. Int. Ed. 2017; 56: 3270
42
Yuan B,
Zhuang J,
Kirmess KM,
Bridgmohan CN,
Whalley AC,
Wang L,
Plunkett KN.
J. Org. Chem. 2016; 81: 8312
43
Kato S,
Kuwako S,
Takahashi N,
Kijima T,
Nakamura Y.
J. Org. Chem. 2016; 81: 7700
44
Cao J,
London G,
Dumele O,
von Wantoch Rekowski M,
Trapp N,
Ruhlmann L,
Boudon C,
Stanger A,
Diederich F.
J. Am. Chem. Soc. 2015; 137: 7178
45
Konishi A,
Yasuda M.
Chem. Lett. 2021; 50: 195
46
Marshall JL,
Uchida K,
Frederickson CK,
Schütt C,
Zeidell AM,
Goetz KP,
Finn TW,
Jarolimek K,
Zakharov LN,
Risko C,
Herges R,
Jurchescu OD,
Haley MM.
Chem. Sci. 2016; 7: 5547
47
Hanida K,
Kim J,
Fukui N,
Tsutsui Y,
Seki S,
Kim D,
Shinokubo H.
Angew. Chem. Int. Ed. 2021; 60: 20765
48
Chase DT,
Rose BD,
McClintock SP,
Zakharov LN,
Haley MM.
Angew. Chem. Int. Ed. 2011; 50: 1127
49
Mayer PJ,
El Bakouri O,
Holczbauer T,
Samu GF,
Janáky C,
Ottosson H,
London G.
J. Org. Chem. 2020; 85: 5158
50
Schmidt M,
Wassy D,
Hermann M,
González MT,
Agräit N,
Zotti LA,
Esser B,
Leary E.
Chem. Commun. 2021; 57: 745
51
Hermann M,
Wassy D,
Kratzert D,
Esser B.
Chem. Eur. J. 2018; 24: 7374
52
Yamago S,
Watanabe Y,
Iwamoto T.
Angew. Chem. Int. Ed. 2010; 49: 757
53
Hitosugi S,
Nakanishi W,
Yamasaki T,
Isobe H.
Nat. Commun. 2011; 2: 492
54
Wang J,
Zhuang G,
Chen M,
Lu D,
Li Z,
Huang Q,
Jia H,
Cui S,
Shao X,
Yang S,
Du P.
Angew. Chem. Int. Ed. 2020; 59: 1619
55
Sicard L,
Lucas F,
Jeannin O,
Bouit P,
Rault-Berthelot J,
Quinton C,
Poriel C.
Angew. Chem. Int. Ed. 2020; 59: 11066
56
Hitosugi S,
Sato S,
Matsuno T,
Koretsune T,
Arita R,
Isobe H.
Angew. Chem. Int. Ed. 2017; 56: 9106
57
Kayahara E,
Qu R,
Kojima M,
Iwamoto T,
Suzuki T,
Yamago S.
Chem. Eur. J. 2015; 21: 18939
58
Omachi H,
Matsuura S,
Segawa Y,
Itami K.
Angew. Chem. Int. Ed. 2010; 49: 10202
59
Majewski MA,
Stępień M.
Angew. Chem. Int. Ed. 2019; 58: 86
60
Jasti R,
Bhattacharjee J,
Neaton JB,
Bertozzi CR.
J. Am. Chem. Soc. 2008; 130: 17646
61
Takaba H,
Omachi H,
Yamamoto Y,
Bouffard J,
Itami K.
Angew. Chem. Int. Ed. 2009; 48: 6112
62
Huang C,
Huang Y,
Akhmedov NG,
Popp BV,
Petersen JL,
Wang KK.
Org. Lett. 2014; 16: 2672
63
Sun Z,
Miyamoto N,
Sato S,
Tokuyama H,
Isobe H.
Chem. Asian J. 2017; 12: 271
64
Mitra NK,
Meudom R,
Corzo HH,
Gorden JD,
Merner BL.
J. Am. Chem. Soc. 2016; 138: 3235
65
Burgess EM,
Penton HR. Jr,
Taylor EA.
J. Org. Chem. 1973; 38: 26
66
Huang Q,
Zhuang G,
Jia H,
Qian M,
Cui S,
Yang S,
Du P.
Angew. Chem. Int. Ed. 2019; 58: 6244
67
Johnson CR,
Zeller JR.
J. Am. Chem. Soc. 1982; 104: 4021
68
Johnson CR,
Zeller JR.
Tetrahedron 1984; 40: 1225
69
Sarkar P,
Sun Z,
Tokuhira T,
Kotani M,
Sato S,
Isobe H.
ACS Cent. Sci. 2016; 2: 740
70
Hitosugi S,
Yamasaki T,
Isobe H.
J. Am. Chem. Soc. 2012; 134: 12442
71
Matsuno T,
Kamata S,
Hitosugi S,
Isobe H.
Chem. Sci. 2013; 4: 3179
72
Darzi ER,
White BM,
Loventhal LK,
Zakharov LN,
Jasti R.
J. Am. Chem. Soc. 2017; 139: 3106
73
Bodwell GJ,
Fleming JJ,
Miller DO.
Tetrahedron 2001; 57: 3577
74
Merner BL,
Unikela KS,
Dawe LN,
Thompson DW,
Bodwell GJ.
Chem. Commun. 2013; 49: 5930
75
Colwell CE,
Price TW,
Stauch T,
Jasti R.
Chem. Sci. 2020; 11: 3923
76
Xia J,
Bacon JW,
Jasti R.
Chem. Sci. 2012; 3: 3018
77
Iwamoto T,
Watanabe Y,
Sakamoto Y,
Suzuki T,
Yamago S.
J. Am. Chem. Soc. 2011; 133: 8354
78
Klod S,
Kleinpeter E.
J. Chem. Soc., Perkin Trans. 2 2001; 1893
79
Frederickson CK,
Zakharov LN,
Haley MM.
J. Am. Chem. Soc. 2016; 138: 16827
80
von Ragué Schleyer P,
Maerker C,
Dransfeld A,
Jiao H,
Hommes NJ. R. van E.
J. Am. Chem. Soc. 1996; 118: 6317
81
Gershoni-Poranne R,
Stanger A.
Chem. Eur. J. 2014; 20: 5673
82
D’Andrade BW,
Datta S,
Forrest SR,
Djurovich P,
Polikarpov E,
Thompson ME.
Org. Electron. 2005; 6: 11
83
Wermuth CG,
Ganellin CR,
Lindberg P,
Mitscher LA.
Pure Appl. Chem. 1979; 51: 1129
84
Rose BD,
Shoer LE,
Wasielewski MR,
Haley MM.
Chem. Phys. Lett. 2014; 616–617: 137
85
Sánchez-Carnerero EM,
Agarrabeitia AR,
Moreno F,
Maroto BL,
Muller G,
Ortiz MJ,
de la Moya S.
Chem. Eur. J. 2015; 21: 13488
86
Lu D,
Huang Q,
Wang S,
Wang J,
Huang P,
Du P.
Front. Chem. 2019; 7: 668
87
Toyota S,
Tsurumaki E.
Chem. Eur. J. 2019; 25: 6878
88
Iwamoto T,
Watanabe Y,
Sadahiro T,
Haino T,
Yamago S.
Angew. Chem. Int. Ed. 2011; 50: 8342
89
Iwamoto T,
Watanabe Y,
Takaya H,
Haino T,
Yasuda N,
Yamago S.
Chem. Eur. J. 2013; 19: 14061
90
Hahn R,
Bohle F,
Kotte S,
Keller TJ,
Jester S.-S,
Hansen A,
Grimme S,
Esser B.
Chem. Sci. 2018; 9: 3477
91
Hahn R,
Bohle F,
Fang W,
Walther A,
Grimme S,
Esser B.
J. Am. Chem. Soc. 2018; 140: 17932