Synlett 2022; 33(06): 546-550 DOI: 10.1055/a-1755-1754
Electrophilic (Ethoxycarbonyl)difluoromethylthiolation Using Difluoroalkyl Sulfonium Salts
Weijian Liang‡
a
College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, P. R. of China
,
Kaixiao Li‡
b
College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, P. R. of China
,
Lijiang Zhou
a
College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, P. R. of China
,
Yage Zhang∗
a
College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, P. R. of China
› Author Affiliations This work was supported by Zhejiang Normal University.
Abstract
We report a simple protocol for (ethoxycarbonyl)difluoromethylthiolation of nucleophilic compounds using a difluoroalkyl sulfonium salt which can be prepared in situ via Tf2 O-triggered electrophilic activation of a benzyl difluoroalkyl sulfoxide. With the protocol, difluoroalkylthiolated arenes, heteroarenes, α-difluoroalkylthiolated carbonyl compounds, etc. were obtained smoothly with good to excellent yields. Merits of the reaction include the readily available difluoroalkylthiolation reagent and substrates, mild conditions, and excellent regioselectivity.
Key words
difluoroalkylthiolation -
sulfonium salts -
dealkylation -
alkylthiolation -
Pummerer reaction
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-1755-1754.
Supporting Information
Publication History
Received: 26 December 2021
Accepted after revision: 30 January 2022
Accepted Manuscript online: 30 January 2022
Article published online: 21 February 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References and Notes
1a
Chambers RD.
Fluorine in Organic Chemistry
. Blackwell; Oxford: 2004
1b
Kirsch P.
Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications 2004
1c
Uneyam K.
Organofluorine Chemistry
. Blackwell; Oxford: 2006
1d
Li M,
Xue X.-S,
Cheng J.-P.
Acc. Chem. Res. 2020; 53: 182
1e
Ni C,
Hu J.
Chem. Soc. Rev. 2016; 45: 5441
2a
Zhang C,
Yan K,
Fu C,
Peng H,
Hawker CJ,
Whittaker AK.
Chem. Rev. 2022; 122: 167
2b
Inoue M,
Sumii Y,
Shibata N.
ACS Omega 2020; 5: 10633
2c
Mei H,
Han J,
White S,
Graham DJ,
Izawa K,
Sato T,
Fustero S,
Meanwell NA,
Soloshonok VA.
Chem. Eur. J. 2020; 26: 11349
2d
Johnson BM,
Shu YZ,
Zhuo X,
Meanwell NA.
J. Med. Chem. 2020; 63: 6315
2e
Meanwell NA.
J. Med. Chem. 2018; 61: 5822
2f
Gillis EP,
Eastman KJ,
Hill MD,
Donnelly DJ,
Meanwell NA.
J. Med. Chem. 2015; 58: 8315
2g
Ojima I.
J. Org. Chem. 2013; 78: 6358
2h
Purser S,
Moore PR,
Swallow S,
Gouverneur V.
Chem. Soc. Rev. 2008; 37: 320
2i
Müller K,
Faeh C,
Diederich F.
Science 2007; 317: 1881
3a
Wu J,
Shen Q.
Acc. Chem. Res. 2021; 54: 2946
3b
Xiao X,
Zheng Z.-T,
Li T,
Zheng J.-L,
Tao T,
Chen L.-M,
Gu J.-Y,
Yao X,
Lin J.-H,
Xiao J.-C.
Synthesis 2020; 52: 197
3c
Pannecoucke X,
Besset T.
Org. Biomol. Chem. 2019; 17: 1683
4a
Xiong H.-Y,
Pannecoucke X,
Besset T.
Chem. Eur. J. 2016; 22: 16734
4b
Ismalaj E,
Le Bars D,
Billard T.
Angew. Chem. Int. Ed. 2016; 55: 4790
4c
Xiong H.-Y,
Bayle A,
Pannecoucke X,
Besset T.
Angew. Chem. Int. Ed. 2016; 55: 13490
4d
Yao R,
Chen W,
Shen Q.
Chin. J. Org. Chem. 2021; 41: 2686
5a
Shen F,
Zhang P,
Lu L,
Shen Q.
Org. Lett. 2017; 19: 1032
5b
Ismalaj E,
Glenadel Q,
Billard T.
Eur. J. Org. Chem. 2017; 14: 1911
5c
Petit-Cancelier F,
Couve-Bonnaire S,
Besset T.
Tetrahedron 2021; 98: 132446
5d
Xu L,
Wang H,
Zheng C,
Zhao G.
Tetrahedron 2017; 73: 6057
5e
Hugenberg V,
Haufe GJ.
Fluorine Chem. 2010; 131: 942
5f
Gouault S,
Guerin C,
Lemoucheux L,
Lequeux T,
Pommelet J.-C.
Tetrahedron Lett. 2003; 44: 5061
6a
Hamashima T,
Mori Y,
Sawada K,
Kasahara Y,
Murayama D,
Kamei Y,
Okuno H,
Yokoyama Y,
Suzuki H.
Chem. Pharm. Bull. 2012; 61: 292
6b
Becht J.-M,
Wagner A,
Mioskowski C.
J. Org. Chem. 2003; 68: 5758
6c
Jain S,
Shukla A,
Mukhopadhyay A,
Suryawanshi SN,
Bhakuni DS.
Synth. Commun. 1990; 20: 1315
6d
Muchowski JM,
Galeazzi E,
Greenhouse R,
Guzman A,
Perez V,
Ackerman N,
Ballaron SA,
Rovito JR,
Tomolonis AJ,
Young JM.
J. Med. Chem. 1989; 32: 1202
6e
Zhang L.-Y,
Wu Y.-H,
Wang N.-X,
Gao X.-W,
Yan Z,
Xu B.-C,
Liu N,
Wang B.-Z,
Xing Y.
Eur. J. Org. Chem. 2021; 1446
7
Fernandez-Salas J,
Pulis PA,
Procter DJ.
Chem. Commun. 2016; 52: 12364
8
Wang D,
Carlton CG,
Tayu M,
McDouall JJ. W,
Perry GJ. P,
Procter DJ.
Angew. Chem. Int. Ed. 2020; 59: 15918
9a
Landelle G,
Panossian A,
Leroux FR.
Curr. Top. Med. Chem. 2014; 14: 941
9b
Shao X,
Xu C,
Lu L,
Shen Q.
Acc. Chem. Res. 2015; 48: 1227
9c
Chachignon H,
Cahard D.
Chin. J. Chem. 2016; 34: 445
10a
Sánchez-Obregón R,
Salgado F,
Ortiz B,
Díaz E,
Yuste F,
Walls F,
García Ruano JL.
Tetrahedron 2007; 63: 10521
10b
Volonterio A,
Bravo P,
Pesenti C,
Zanda M.
Tetrahedron Lett. 2001; 42: 3985
10c
Crucianelli M,
Bravo P,
Arnone A,
Corradi E,
Meille SV,
Zanda M.
J. Org. Chem. 2000; 65: 2965
10d
Arnone A,
Bravo P,
Capelli S,
Fronza G,
Meille SV,
Zanda M.
J. Org. Chem. 1996; 61: 3375
10e
Beeley NR. A,
Harwood LM,
Hedger PC.
J. Chem. Soc., Perkin Trans. 1 1994; 2245
10f
Uchida Y,
Kozuka S.
J. Chem. Soc., Chem. Commun. 1981; 510
11a
Chen YH,
Wen S,
Tian QY,
Zhang YQ,
Cheng GL.
Org. Lett. 2021; 23: 7905
11b
Šiaučiulis M,
Ahlsten N,
Pulis AP,
Procter DJ.
Angew. Chem. Int. Ed. 2019; 58: 8779
11c
Eberhart AJ,
Imbriglio JE,
Procter DJ.
Org. Lett. 2011; 13: 5882
12
Typical Difluoroalkylthiolation Procedure
To a solution of indole 1b (39 mg, 0.2 mmol) and sulfoxide 2 (79 mg, 0.3 mmol) in MeCN (2.0 mL) was added trifluoromethanesulfonic anhydride (Tf2 O, 50 μL, 0.3 mmol) at 0 °C. After stirring for 1 h, diethylamine (43 mg, 0.6 mmol) was added. The resulted reaction mixture was then gradually warmed to rt and kept stirring for 12 h. After that, the mixture was passed through a short silica gel column and concentrated under vacuum. The obtained residue was further purified by flash chromatography on silica gel (eluent: PE/EtOAc, 40:1) affording product 3b as light yellow oil (47.5 mg, 68%).
Characterization Data for 3b
1 H NMR (600 MHz, CDCl3 ): δ = 8.80 (s, 1 H), 7.86 (s, 1 H), 7.42 (d, J = 2.2 Hz, 1 H), 7.32 (d, J = 8.6 Hz, 1 H), 7.21 (d, J = 8.6, 1 H), 4.20 (q, J = 7.2 Hz, 2 H), 1.25 (t, J = 7.2 Hz, 3 H) ppm. 13 C NMR (151 MHz, CDCl3 ): δ = 162.28 (t, J = 32.9 Hz), 134.82, 134.20, 131.55, 126.40, 122.00, 119.61 (t, J = 287.3 Hz), 115.08, 113.38, 95.32, 63.88, 13.85 ppm. 19 F NMR (565 MHz, CDCl3 ): δ = –84.25 (s) ppm. IR (neat): 3338, 3111, 2996, 2919, 1747, 1305, 1292, 1121, 1090, 728, 605 cm–1 . HRMS (ESI-TOF): m/z calcd for C12 H10 F2 NO2 SBrNa [M + Na+ ]: 371.9476; found: 371.9460.