Synlett, Inhaltsverzeichnis Synlett 2022; 33(09): 885-889DOI: 10.1055/a-1760-8817 cluster Mechanochemistry Pulling Outward but Reacting Inward: Mechanically Induced Symmetry-Allowed Reactions of cis- and trans-Diester-Substituted Dichlorocyclopropanes Zi Wang , Tatiana B. Kouznetsova , Stephen L. Craig ∗ Artikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Abstract The mechanically induced symmetry-allowed disrotatory ring openings of cis- and trans-gem-dichlorocyclopropane (gDCC) diesters are demonstrated through sonication and single-molecule force spectroscopy (SMFS) studies. In contrast to the previously reported symmetry-forbidden conrotatory ring opening of alkyl-tethered trans-gDCC, we show that the diester-tethered trans-gDCC primarily undergoes a symmetry-allowed disrotatory pathway even at the high forces (>2 nN) and short-time scales (ms or less) of sonication and SMFS experiments. The quantitative force-rate data obtained from SMFS data is consistent with computational models of transition-state geometry for the symmetry-allowed process, and activation lengths of 1.41 ± 0.02 Å and 1.08 ± 0.03 Å are inferred for the cis-gDCC diester and trans-gDCC diester, respectively. The strong mechanochemical coupling in the trans-gDCC is notable, given that the directionality of the applied force may appear initially to oppose the disrotatory motion associated with the reaction. The stereochemical perturbations of mechanical coupling created by the ester attachments reinforce the complexity that is possible in covalent polymer mechanochemistry and illustrate the breadth of reactivity outcomes that are available through judicious mechanophore design. Key words Key wordsWoodward–Hoffmann - polymer mechanochemistry - structure–activity - gem-dichlorocyclopropane diester - sonication and single-molecule force spectroscopy Volltext Referenzen References and Notes 1 Z.W. is also affiliated with Lawrence Berkeley National Laboratory, Molecular Foundry, 67 Cyclotron Road, Berkeley, CA 94720, USA. 2 Woodward RB, Hoffmann R. Angew. Chem., Int. Ed. Engl. 1969; 8: 781 3a Brown CL, Craig SL. Chem. Sci. 2015; 6: 2158 3b Ghanem MA, Basu A, Behrou R, Boechler N, Boydston AJ, Craig SL, Lin Y, Lynde BE, Nelson A, Shen H, Storti DW. Nat. Rev. Mater. 2021; 6: 84 3c Hickenboth CR, Moore JS, White SR, Sottos NR, Baudry J, Wilson SR. Nature 2007; 446: 423 4 Bowser BH, Craig SL. Polym. Chem. 2018; 9: 3583 5a Ong MT, Leiding J, Tao H, Virshup AM, Martínez TJ. J. Am. Chem. Soc. 2009; 131: 6377 5b Ribas-Arino J, Shiga M, Marx D. Angew. Chem. Int. Ed. 2009; 48: 4190 5c Kochhar GS, Bailey A, Mosey NJ. Angew. Chem. Int. Ed. 2010; 49: 7452 5d Li W, Edwards SA, Lu L, Kubar T, Patil SP, Grubmüller H, Groenhof G, Gräter F. ChemPhysChem 2013; 14: 2687 5e Wang J, Kouznetsova TB, Niu Z, Rheingold AL, Craig SL. J. Org. Chem. 2015; 80: 11895 6 Wang J, Kouznetsova TB, Niu Z, Ong MT, Klukovich HM, Rheingold AL, Martinez TJ, Craig SL. Nat. Chem. 2015; 7: 323 7 Lenhardt JM, Ong MT, Choe R, Evenhuis CR, Martinez TJ, Craig SL. Science 2010; 329: 1057 8a Klukovich HM, Kouznetsova TB, Kean ZS, Lenhardt JM, Craig SL. Nat. Chem. 2012; 5: 110 8b Dopieralski P, Ribas-Arino J, Marx D. Angew. Chem. Int. Ed. 2011; 50: 7105 9 Klukovich HM, Kean ZS, Ramirez AL. B, Lenhardt JM, Lin J, Hu X, Craig SL. J. Am. Chem. Soc. 2012; 134: 9577 10a Brown CL, Bowser BH, Meisner J, Kouznetsova TB, Seritan S, Martinez TJ, Craig SL. J. Am. Chem. Soc. 2021; 143: 3846 10b Tian Y, Cao X, Li X, Zhang H, Sun C.-L, Xu Y, Weng W, Zhang W, Boulatov R. J. Am. Chem. Soc. 2020; 142: 18687 11 Grubbs RH, Chang S. Tetrahedron 1998; 54: 4413 12 Zhang Y, Wang Z, Kouznetsova TB, Sha Y, Xu E, Shannahan L, Fermen-Coker M, Lin Y, Tang C, Craig SL. Nat. Chem. 2021; 13: 56 13a Barbee MH, Kouznetsova T, Barrett SL, Gossweiler GR, Lin Y, Rastogi SK, Brittain WJ, Craig SL. J. Am. Chem. Soc. 2018; 140: 12746 13b Razgoniaev AO, Glasstetter LM, Kouznetsova TB, Hall KC, Horst M, Craig SL, Franz KJ. J. Am. Chem. Soc. 2021; 143: 1784 14 Hummer G, Szabo A. Biophys. J. 2003; 85: 5 15 Wang J, Kouznetsova TB, Kean ZS, Fan L, Mar BD, Martínez TJ, Craig SL. J. Am. Chem. Soc. 2014; 136: 15162 16 Peng C, Ayala PY, Schlegel HB, Frisch MJ. J. Comput. Chem. 1996; 17: 49 17 Klukovich HM, Kouznetsova TB, Kean ZS, Lenhardt JM, Craig SL. Nat. Chem. 2013; 5: 110 18 Kean ZS, Niu Z, Hewage GB, Rheingold AL, Craig SL. J. Am. Chem. Soc. 2013; 135: 13598 19a Huang W, Wu X, Gao X, Yu Y, Lei H, Zhu Z, Shi Y, Chen Y, Qin M, Wang W, Cao Y. Nat. Chem. 2019; 11: 310 19b O’Neill RT, Boulatov R. Synlett 2021; 32: in press; 20a Sagara Y, Karman M, Verde-Sesto E, Matsuo K, Kim Y, Tamaoki N, Weder C. J. Am. Chem. Soc. 2018; 140: 1584 20b Lin Y, Barbee MH, Chang C.-C, Craig SL. J. Am. Chem. Soc. 2018; 140: 15969 20c Kosuge T, Zhu X, Lau VM, Aoki D, Martinez TJ, Moore JS, Otsuka H. J. Am. Chem. Soc. 2019; 141: 1898 21a Ramirez AL. B, Kean ZS, Orlicki JA, Champhekar M, Elsakr SM, Krause WE, Craig SL. Nat. Chem. 2013; 5: 757 21b Wang J, Piskun I, Craig SL. ACS Macro Lett. 2015; 4: 834 21c Imato K, Irie A, Kosuge T, Ohishi T, Nishihara M, Takahara A, Otsuka H. Angew. Chem. Int. Ed. 2015; 54: 6168 21d Matsuda T, Kawakami R, Namba R, Nakajima T, Gong JP. Science 2019; 363: 504 22a Wang S, Beech HK, Bowser BH, Kouznetsova TB, Olsen BD, Rubinstein M, Craig SL. J. Am. Chem. Soc. 2021; 143: 3714 22b Wang Z, Zheng X, Ouchi T, Kouznetsova TB, Beech HK, Av-Ron S, Matsuda T, Bowser BH, Wang S, Johnson JA, Kalow JA, Olsen BD, Gong JP, Rubinstein M, Craig SL. Science 2021; 374: 193 23 Typical Experimental Procedure for the Synthesis of Multimechanophore Polymers P1 and P2 50 mg cis-macrocycle (0.15 mmol) and 105 mg monoepoxidized cyclooctadiene (0.85 mmol), or 84 mg trans-macrocycle (0.25 mmol) and 93 mg monoepoxidized cyclooctadiene (0.75 mmol), were dissolved in 0.15 mL dry DCM and deoxygenated with N2 for 10 min. 1.0 mg (0.0012 mmol) Grubbs second-generation catalyst was dissolved in 1 mL DCM and deoxygenated for 20 min. 0.1 mL of the Grubbs catalyst solution was transferred to the monomer solution via a syringe. The viscosity of the solution increased after 30 min and stirring ceased quickly. 0.2 mL of DCM was added to the solution to allow the stirring to continue, and the reaction was allowed to proceed for another 2 h. The reaction was quenched with 1 mL of ethyl vinyl ether and stirred for 1 h. The reaction was then precipitated in methanol, redissolved in DCM, and reprecipitated in methanol and dried on a vacuum line. P1: 1H NMR (500 MHz, CDCl3): δ = 5.52–5.41 (m, 14 H), 4.22–4.11 (m, 4 H), 2.94–2.91 (m, 12 H), 2.81 (s, 2 H), 2.24–2.13 (m, 25 H), 1.70–1.64 (m, 4 H), 1.68–1.42 (m, 36 H). P2: 1H NMR (500 MHz, CDCl3): δ = 5.54–5.41 (m, 9 H), 4.21–4.18 (m, 4 H), 3.05 (s, 2 H), 2.93–2.91 (m, 6.7 H), 2.23–2.11 (m, 18 H), 1.70–1.45 (m, 18 H). Zusatzmaterial Zusatzmaterial Supporting Information