Ultraschall Med 2023; 44(04): e175-e183
DOI: 10.1055/a-1778-3585
Original Article

Analysis of the Results of Sonographic Screening Examinations According to the Maternity Guidelines Before and After the Introduction of the Extended Basic Screening (IIb Screening) in Hesse

Analyse der Ergebnisse der sonographischen Screeninguntersuchungen gemäß der Mutterschafts-Richtlinien vor und nach Einführung des erweiterten Basis-Screenings (IIb-Screening) in Hessen
1   Division of Prenatal Medicine, Departement of Obstetrics and Gynecology, University Hospitals Giessen and Marburg Campus Giessen, Giessen, Germany (Ringgold ID: RIN14973)
,
Björn Misselwitz
2   Head of the office and project management, Office for Quality Assurance in Hesse, Eschborn, Germany
,
Helge Hudel
3   Department of Medical Statistics, Justus-Liebig-University, Giessen, Germany
,
Ivonne Bedei
1   Division of Prenatal Medicine, Departement of Obstetrics and Gynecology, University Hospitals Giessen and Marburg Campus Giessen, Giessen, Germany (Ringgold ID: RIN14973)
,
Aline Wolter
1   Division of Prenatal Medicine, Departement of Obstetrics and Gynecology, University Hospitals Giessen and Marburg Campus Giessen, Giessen, Germany (Ringgold ID: RIN14973)
,
Johanna Schenk
4   Division of Prenatal Medicine, Department of Obstetrics and Gynecology, University Hospitals Giessen and Marburg Campus Giessen, Giessen, Germany (Ringgold ID: RIN14973)
,
Corinna Keil
5   Prenatal Medicine and Fetal Therapy, University Hospital of Giessen and Marburg Campus Marburg, Marburg, Germany (Ringgold ID: RIN61061)
,
Siegmund Köhler
5   Prenatal Medicine and Fetal Therapy, University Hospital of Giessen and Marburg Campus Marburg, Marburg, Germany (Ringgold ID: RIN61061)
,
Roland Axt-Fliedner
1   Division of Prenatal Medicine, Departement of Obstetrics and Gynecology, University Hospitals Giessen and Marburg Campus Giessen, Giessen, Germany (Ringgold ID: RIN14973)
› Author Affiliations

Abstract

Aim of the Study The aim of the study is to examine the detection rates of malformations before and after the introduction of extended basic screening in Hesse by the Federal Joint Committee (Gemeinsamer Bundesausschuss, GQH) on July 1, 2013.

Method This is a retrospective, mainly exploratory data analysis of quality assurance data from the Office for Quality Assurance in Hesse (GQH). The data was collected in the period from January 1, 2010 to December 31, 2016 in the obstetric departments of the Hessian hospitals using documentation forms. The classification and evaluation of the diagnoses is based on ICD-10-GM-2019.

Results At least one malformation is present in 0.7% of the cases. With a share of 30.0%, most of the congenital malformations are from the musculoskeletal system. 12.2% of the malformations come from the facial cleft, closely followed by malformations of the circulatory system with 11.3%. The highest prenatal detection rate (PDR) is found in congenital malformations of the nervous system at 56.8%. The lowest PDR is found in those of the genital organs with 2.1%. The PDR of cardiovascular malformations is 32.9%. Overall, a PDR of 25.2% is achieved. There was no change in the number of prenatal malformation diagnoses after the introduction of extended basic ultrasound. The distribution of malformation diagnoses not detected prenatally to the organ systems also has not changed after the introduction.

Conclusion The introduction of extended basic ultrasound did not bring the desired improvement with regard to the PDR in Hesse. Alternative approaches should be considered.

Zusammenfassung

Studienziel Ziel der Arbeit ist es, die Entdeckungsraten von Fehlbildungen vor und nach Einführung des erweiterten Basis-Screenings in Hessen durch den Gemeinsamen Bundesausschuss (G-BA) am 01.07.2013 zu untersuchen.

Methode Es handelt sich um eine retrospektive, überwiegend explorative Datenanalyse von Qualitätssicherungsdaten der Geschäftsstelle für Qualitätssicherung in Hessen (GQH), die im Zeitraum vom 01.01.2010 bis 31.12.2016 in den geburtshilflichen Abteilungen der hessischen Krankenhäuser mittels Dokumentationsbögen erhoben wurden. Die Einteilung und Auswertung der Diagnosen erfolgen auf Grundlage der ICD-10-GM-2019.

Ergebnisse In 0,7% der Fälle liegt mindestens eine Fehlbildung vor. Mit einem Anteil von 30,0% sind die meisten angeborenen Fehlbildungen aus dem Bereich des Muskel-Skelett-Systems, 12,2% stammen aus dem Bereich der Lippen-, Kiefer- und Gaumenspalte und 11,3% aus dem Bereich des Kreislaufsystems. Die höchste pränatale Detektionsrate (PDR) findet sich bei den angeborenen Fehlbildungen des Nervensystems mit 56,8%. Die niedrigste PDR findet sich bei denen der Genitalorgane mit 2,1%. Insgesamt wird eine PDR von 25,2% erreicht. Es konnte keine Veränderung in der Anzahl der pränatalen Fehlbildungsdiagnosen nach Einführung des erweiterten Basis-Ultraschalls gezeigt werden. Auch die Verteilung der pränatal nicht entdeckten Fehlbildungsdiagnosen auf die Organsysteme hat sich nach der Einführung nicht verändert.

Schlussfolgerungen Die Einführung des erweiterten Basis-Ultraschalls hat nicht die erwünschte Verbesserung im Hinblick auf die PDR in Hessen gebracht. Es sollte über alternative Vorgehensweisen nachgedacht werden.



Publication History

Received: 13 September 2021

Accepted after revision: 02 February 2022

Article published online:
18 March 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Guidelines of the Federal Joint Committee on Medical Care During Pregnancy and After Childbirth (“Maternity Guidelines”) in the version of December 10, 1985 (published in Federal Gazette No. 60a of March 27, 1986), last amended on March 20, 1985. August 2020 (published in the Federal Gazette AT November 23, 2020 B3), entered into force on November 24, 2020.
  • 2 Institute for Quality and Efficiency in Health Care. Ultrasound Screening During Pregnancy: The Quality Of Test For The Detection Of Fetal Anomalies. Final report S05–03. Cologne: IQWiG; 2008
  • 3 Agreement on quality assurance measures in accordance with Section 135 (2) SGB V on ultrasound diagnostics (“Ultrasound Agreement”) dated October 31, 2008 in the version valid from April 1, 2021, Annex I, area of application 9.1a and Annex VI.
  • 4 Guidelines on medical care during pregnancy and after delivery in the version dated March 28, 1986, revised version of the guideline, published in the Federal Gazette No. 60 a (supplement) dated March 27, 1986.
  • 5 Ewigman BG, Crane JP, Frigoletto FD. et al. Effect of prenatal ultrasound screening on perinatal outcome. RADIUS Study Group. N Engl J Med 1993; 329: 821-827
  • 6 Kozlowski P, Burkhardt T, Gembruch U. et al. DEGUM, ÖGUM, SGUM and FMF Germany Recommendations for the Implementation of First-Trimester Screening, Detailed Ultrasound, Cell-Free DNA Screening and Diagnostic Procedures. Ultraschall in Med 2019; 40: 176-193
  • 7 Kähler C, Schramm T, Bald R. et al. Updated DEGUM Quality Requirements for the Basic Prenatal Screening Ultrasound Examination (DEGUM Level I) between 18 + 0 and 21 + 6 weeks of gestation. Ultraschall in Med 2020;
  • 8 Merz E, Eichhorn K-H, von Kaisenberg C. et al. Updated quality requirements for the further differentiated ultrasound examination in prenatal diagnosis (= DEGUM level II) in the period from 18 + 0 to 21 + 6 weeks of pregnancy. Ultraschall in Med 2012; 33: 593-596
  • 9 Faber R, Heling K-S, Steiner H. et al. Doppler Sonography during Pregnancy – DEGUM Quality Standards and Clinical Applications (Part 1). Ultraschall in Med 2019; 40: 319-325
  • 10 Syngelaki A, Hammami A, Bower S. et al. Diagnosis of fetal non-chromosomal abnormalities on routine ultrasound examination at 11–13 weeks’ gestation. Ultrasound Obstet Gynecol 2019; 54: 468-476
  • 11 Becker R, Wegner R-D. Detailed screening for fetal anomalies and cardiac defects at the 11–13-week scan. Ultrasound in Obstetrics & Gynecology 2006; 27: 613-618
  • 12 Rossi AC, Prefumo F. Accuracy of Ultrasonography at 11–14 Weeks of Gestation for Detection of Fetal Structural Anomalies: A Systematic Review. Obstetrics & Gynecology 2013; 122: 1160-1167
  • 13 Luck CA. Value of routine ultrasound scanning at 19 weeks: a four-year study of 8849 deliveries. BMJ 1992; 304: 1474-1478
  • 14 Raupach K, Zimmermann R. Analysis of the causes of misdiagnoses in prenatal sonography and the resulting conclusions for the quality management of prenatal sonographic diagnostics. Ultraschall in Med 2004; 25: 438-443
  • 15 Holland BJ, Myers JA, Woods CR. Prenatal diagnosis of critical congenital heart disease reduces risk of death from cardiovascular compromise prior to planned neonatal cardiac surgery: a meta-analysis. Ultrasound in Obstetrics & Gynecology 2015; 45: 631-638
  • 16 Bonnet D, Coltri A, Butera G. et al. Detection of transposition of the great arteries in fetuses reduces neonatal morbidity and mortality. Circulation 1999; 99: 916-918
  • 17 van Velzen CL, Clur SA, Rijlaarsdam MEB. et al. Prenatal detection of congenital heart disease--results of a national screening programme. BJOG 2016; 123: 400-407
  • 18 Lindinger A, Schwedler G, Hense H-W. Prevalence of Congenital Heart Defects in Newborns in Germany: Results of the First Registration Year of the PAN Study (July 2006 to June 2007). Klin Padiatr 2010; 222: 321-326
  • 19 German Society for Pediatric Cardiology and Congenital Heart Defects. S2k guideline “Truncus arteriosus communis (TAC)”, AWMF register number: 023–043, decided by the board of the German Society for Pediatric Cardiology on February 29th, 2020.
  • 20 German Society for Pediatric Cardiology and Congenital Heart Defects. S2k guideline “Double Outlet Right Ventricle (DORV) in Children and Adolescents”, AWMF register number: 023–017, decided by the board of the German Society for Pediatric Cardiology on April 10, 2013.
  • 21 Jouannic J-M, Gavard L, Fermont L. et al. Sensitivity and specificity of prenatal features of physiological shunts to predict neonatal clinical status in transposition of the great arteries. Circulation 2004; 110: 1743-1746
  • 22 Bensemlali M, Bajolle F, Laux D. et al. Neonatal management and outcomes of prenatally diagnosed CHDs. Cardiol Young 2017; 27: 344-353
  • 23 Mahle WT, Clancy RR, McGaurn SP. et al. Impact of prenatal diagnosis on survival and early neurologic morbidity in neonates with the hypoplastic left heart syndrome. Pediatrics 2001; 107: 1277-1282
  • 24 Bakker MK, Bergman JEH, Krikov S. et al. Prenatal diagnosis and prevalence of critical congenital heart defects: an international retrospective cohort study. BMJ Open 2019; 9: e028139
  • 25 Lloyd DFA, Rutherford MA, Simpson JM. et al. The neurodevelopmental implications of hypoplastic left heart syndrome in the fetus. Cardiol Young 2017; 27: 217-223
  • 26 Axt-Fliedner R, Enzensberger C, Fass N. et al. Fetal diagnosis of hypoplastic left heart, associations and outcomes in the current era. Ultraschall in Med 2012; 33: E51-E56
  • 27 Adzick NS, Thom EA, Spong CY. et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med 2011; 364: 993-1004
  • 28 Ruano R, Dunn T, Braun MC. et al. Lower urinary tract obstruction: fetal intervention based on prenatal staging. Pediatr Nephrol 2017; 32: 1871-1878
  • 29 Statement of the professional association of gynecologists (BVF) and the German Society for Gynecology and Obstetrics (DGGG) united in the German Board and College of Obstetrics and Gynecology (GBCOG) on the main reasons and the draft resolution of the Federal Joint Committee on a change in maternity Guidelines (MuRL): “Non-invasive prenatal diagnosis to determine the risk of autosomal trisomies 13, 18 and 21 using a molecular genetic test (NIPT) for use in high-risk pregnancies”, April 2019, cited on August 1st, 2021. https://www.dggg.de/fileadmin/documents/stellunghaben/GBCOG/2019/290419_4._Stellungnahme_GBCOG_NIPT.pdf
  • 30 Salomon LJ, Alfirevic Z, Berghella V. et al. Practice guidelines for performance of the routine mid-trimester fetal ultrasound scan. Ultrasound Obstet Gynecol 2011; 37: 116-126