Synlett 2022; 33(07): 664-668
DOI: 10.1055/a-1795-7740
letter

Chiral Ammonium Salt Catalyzed Asymmetric Alkylation of Unactivated Amides

Changming Xu
,
Xinshuang Yang
National Natural Science Foundation of China (NSFC, 22061025 and 21662024), Natural Science Foundation of Gansu Province (20JR10RA220), the Foundation of a Hundred Youth Talents Training Program of Lanzhou Jiaotong University.


Abstract

A chiral spirocyclic quaternary ammonium salt catalyzed asymmetric alkylation of unactivated amides under homogeneous conditions has been developed, giving the target products with up to 60% ee. This novel methodology provides a general and concise protocol for asymmetric α-functionalization of unactivated amides.

Supporting Information



Publication History

Received: 01 February 2022

Accepted after revision: 11 March 2022

Accepted Manuscript online:
11 March 2022

Article published online:
31 March 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes


    • For selected examples, see:
    • 1a Yoshikawa N, Yamada YM. A, Das J, Sasai H, Shibasaki M. J. Am. Chem. Soc. 1999; 121: 4168
    • 1b Trost BM, Ito H. J. Am. Chem. Soc. 2000; 122: 12003

      For selected reviews, see:
    • 2a Melchiorre P, Marigo M, Carlone A, Bartoli G. Angew. Chem. Int. Ed. 2008; 47: 6138
    • 2b Nielsen M, Worgull D, Zweifel T, Gschwend B, Bertelsen S, Jørgensen KA. Chem. Commun. 2011; 47: 632
    • 2c Trost BM, Brindle CS. Chem. Soc. Rev. 2010; 39: 1600
    • 2d Melchiorre P. Angew. Chem. Int. Ed. 2012; 51: 9748
    • 3a Chiang Y, Hojatti M, Keeffe JR, Kresge AJ, Schepp NP, Wirz J. J. Am. Chem. Soc. 1987; 109: 4000
    • 3b Koppel IA, Taft RW, Anvia F, Zhu SZ, Hu LQ, Sung KS. J. Am. Chem. Soc. 1994; 116: 3047
    • 3c Bartberger MD, Fukuto JM, Houk KN. Proc. Natl. Acad. Sci. U.S.A. 2001; 98: 2194
    • 3d Richard JP, Williams G, O'Donoghu AC, Amyes TL. J. Am. Chem. Soc. 2002; 124: 2957

      For selected examples, see:
    • 4a Fujieda H, Kanai M, Kambara T, Iida A, Tomioka K. J. Am. Chem. Soc. 1997; 119: 2060
    • 4b Moradi WA, Buchwald SL. J. Am. Chem. Soc. 2001; 123: 7996
    • 4c Lee S, Beare NA, Hartwig JF. J. Am. Chem. Soc. 2001; 123: 8410
    • 4d Jørgensen M, Lee S, Liu X, Wolkowski JP, Hartwig JF. J. Am. Chem. Soc. 2002; 124: 12257
    • 4e Saito S, Kobayashi S. J. Am. Chem. Soc. 2006; 128: 8704
    • 4f Kobayashi S, Kiyohara H, Yamaguchi M. J. Am. Chem. Soc. 2011; 133: 708
    • 4g Guo L, Ma X, Fang H, Jia X, Huang Z. Angew. Chem. Int. Ed. 2015; 54: 4023
    • 4h He Z.-T, Hartwig JF. J. Am. Chem. Soc. 2019; 141: 11749
    • 4i Gonçalves CR, Lemmerer M, Teskey CJ, Adler P, Kaiser D, Maryasin B, González L, Maulide N. J. Am. Chem. Soc. 2019; 141: 18437
  • 5 Spielvogel DJ, Buchwald SL. J. Am. Chem. Soc. 2002; 124: 3500
  • 6 Jette C, Geibel I, Bachman S, Hayashi M, Sakurai S, Shimizu H, Morgan JB, Stoltz BM. Angew. Chem. Int. Ed. 2019; 58: 4297
  • 7 Hayashi M, Bachman S, Hashimoto S, Eichman CC, Stoltz BM. J. Am. Chem. Soc. 2016; 138: 8997
    • 8a Zhang K, Peng Q, Hou X.-L, Wu Y.-D. Angew. Chem. Int. Ed. 2008; 47: 1741
    • 8b Jiang YJ, Zhang GP, Huang JQ, Chen D, Ding CH, Hou XL. Org. Lett. 2017; 19: 5932
  • 9 Liu W, Chen D, Zhu X.-Z, Wan X.-L, Hou X.-L. J. Am. Chem. Soc. 2009; 131: 8734
    • 10a Arteaga FA, Liu Z, Brewitz L, Chen J, Sun B, Kumagai N, Shibasaki M. Org. Lett. 2016; 18: 2391
    • 10b Liu Z, Takeuchi T, Pluta R, Arteaga F, Kumagai N, Shibasaki M. Org. Lett. 2017; 19: 710
  • 11 Teng B, Chen W, Dong S, Kee CW, Gandamana DA, Zong L, Tan C.-H. J. Am. Chem. Soc. 2016; 138: 9935
    • 12a Suzuki H, Sato I, Yamashita Y, Kobayashi S. J. Am. Chem. Soc. 2015; 137: 4336
    • 12b Sato I, Suzuki H, Yamashita Y, Kobayashi S. Org. Chem. Front. 2016; 3: 1241
    • 12c Yamashita Y, Kobayashi S. Chem. Eur. J. 2018; 24: 10
  • 13 Yamashita Y, Noguchi A, Fushimi S, Hatanaka M, Kobayashi S. J. Am. Chem. Soc. 2021; 143: 5598
    • 14a Zook HD, Gumby WL. J. Am. Chem. Soc. 1960; 82: 1386
    • 14b Kuwajima I, Nakamura E. J. Am. Chem. Soc. 1975; 97: 3257
    • 15a O’Donnell MJ, Delgado F, Hostettler C, Schwesinger R. Tetrahedron Lett. 1998; 39: 8775
    • 15b Mettath S, Srikanth GS. C, Dangerfield BS, Castle SL. J. Org. Chem. 2004; 69: 6489
    • 15c Ma B, Parkinson JL, Castle SL. Tetrahedron Lett. 2007; 48: 2083
  • 16 Xu C, Qi Y, Yang X, Li X, Li Z, Bai L. Org. Lett. 2021; 23: 2890
  • 17 Representative Procedure for Asymmetric Alkylation A Schlenk tube was charged with 1 (0.2 mmol) and 3k (0.02 mmol, 18.4 mg) under a nitrogen atmosphere, then NaHMDS (0.2 mmol, 0.4 mL, 0.5 M in toluene) and 2 (0.4 mmol) in toluene (1.0 mL) were added separately. The reaction mixture was stirred at –80 °C and monitored by TLC. When completed, the reaction mixture was diluted with water (5.0 mL) and extracted with ethyl acetate (3 × 10 mL). The combined organic layer was washed with brine, dried with anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by chromatography column on silica gel (ethyl acetate/petroleum ether = 1:30 to 1:10) to afford product (S)-4. (S)-2-Methyl-N,N,3-triphenylpropanamide (4a) Colorless oil; 60% yield; 43% ee; [α]D 25 –79.6 (c 1.0, CHCl3). HRMS (ESI-TOF): m/z [M + H]+ calcd for C22H22NO+: 316.1695; found: 316.1695. 1H NMR (500 MHz, CDCl3): δ = 7.50–6.67 (m, 15 H), 3.06 (dd, J = 15.0, 10.0 Hz, 1H), 2.92–2.72 (m, 1 H), 2.59 (dd, J = 15.0, 5.0 Hz, 1 H), 1.20 (d, J = 5.0 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 176.2, 142.9, 140.1, 129.7, 129.5, 128.9, 128.4, 126.6, 126.5, 41.1, 40.2, 18.4. HPLC (Chiralpak Daicel AS-H, hexane/isopropanol = 95:5, 0.5 mL/min, 254 nm), t R(min) = 13.9 min, t R(maj) = 22.9 min.