Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2022; 33(07): 664-668
DOI: 10.1055/a-1795-7740
DOI: 10.1055/a-1795-7740
letter
Chiral Ammonium Salt Catalyzed Asymmetric Alkylation of Unactivated Amides
National Natural Science Foundation of China (NSFC, 22061025 and 21662024), Natural Science Foundation of Gansu Province (20JR10RA220), the Foundation of a Hundred Youth Talents Training Program of Lanzhou Jiaotong University.
Abstract
A chiral spirocyclic quaternary ammonium salt catalyzed asymmetric alkylation of unactivated amides under homogeneous conditions has been developed, giving the target products with up to 60% ee. This novel methodology provides a general and concise protocol for asymmetric α-functionalization of unactivated amides.
Key words
unactivated amides - asymmetric alkylation - homogeneous catalysis - kinetics control - ammonium salt catalystSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1795-7740.
- Supporting Information
Publication History
Received: 01 February 2022
Accepted after revision: 11 March 2022
Accepted Manuscript online:
11 March 2022
Article published online:
31 March 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Yoshikawa N, Yamada YM. A, Das J, Sasai H, Shibasaki M. J. Am. Chem. Soc. 1999; 121: 4168
- 1b Trost BM, Ito H. J. Am. Chem. Soc. 2000; 122: 12003
- 2a Melchiorre P, Marigo M, Carlone A, Bartoli G. Angew. Chem. Int. Ed. 2008; 47: 6138
- 2b Nielsen M, Worgull D, Zweifel T, Gschwend B, Bertelsen S, Jørgensen KA. Chem. Commun. 2011; 47: 632
- 2c Trost BM, Brindle CS. Chem. Soc. Rev. 2010; 39: 1600
- 2d Melchiorre P. Angew. Chem. Int. Ed. 2012; 51: 9748
- 3a Chiang Y, Hojatti M, Keeffe JR, Kresge AJ, Schepp NP, Wirz J. J. Am. Chem. Soc. 1987; 109: 4000
- 3b Koppel IA, Taft RW, Anvia F, Zhu SZ, Hu LQ, Sung KS. J. Am. Chem. Soc. 1994; 116: 3047
- 3c Bartberger MD, Fukuto JM, Houk KN. Proc. Natl. Acad. Sci. U.S.A. 2001; 98: 2194
- 3d Richard JP, Williams G, O'Donoghu AC, Amyes TL. J. Am. Chem. Soc. 2002; 124: 2957
- 4a Fujieda H, Kanai M, Kambara T, Iida A, Tomioka K. J. Am. Chem. Soc. 1997; 119: 2060
- 4b Moradi WA, Buchwald SL. J. Am. Chem. Soc. 2001; 123: 7996
- 4c Lee S, Beare NA, Hartwig JF. J. Am. Chem. Soc. 2001; 123: 8410
- 4d Jørgensen M, Lee S, Liu X, Wolkowski JP, Hartwig JF. J. Am. Chem. Soc. 2002; 124: 12257
- 4e Saito S, Kobayashi S. J. Am. Chem. Soc. 2006; 128: 8704
- 4f Kobayashi S, Kiyohara H, Yamaguchi M. J. Am. Chem. Soc. 2011; 133: 708
- 4g Guo L, Ma X, Fang H, Jia X, Huang Z. Angew. Chem. Int. Ed. 2015; 54: 4023
- 4h He Z.-T, Hartwig JF. J. Am. Chem. Soc. 2019; 141: 11749
- 4i Gonçalves CR, Lemmerer M, Teskey CJ, Adler P, Kaiser D, Maryasin B, González L, Maulide N. J. Am. Chem. Soc. 2019; 141: 18437
- 5 Spielvogel DJ, Buchwald SL. J. Am. Chem. Soc. 2002; 124: 3500
- 6 Jette C, Geibel I, Bachman S, Hayashi M, Sakurai S, Shimizu H, Morgan JB, Stoltz BM. Angew. Chem. Int. Ed. 2019; 58: 4297
- 7 Hayashi M, Bachman S, Hashimoto S, Eichman CC, Stoltz BM. J. Am. Chem. Soc. 2016; 138: 8997
- 8a Zhang K, Peng Q, Hou X.-L, Wu Y.-D. Angew. Chem. Int. Ed. 2008; 47: 1741
- 8b Jiang YJ, Zhang GP, Huang JQ, Chen D, Ding CH, Hou XL. Org. Lett. 2017; 19: 5932
- 9 Liu W, Chen D, Zhu X.-Z, Wan X.-L, Hou X.-L. J. Am. Chem. Soc. 2009; 131: 8734
- 10a Arteaga FA, Liu Z, Brewitz L, Chen J, Sun B, Kumagai N, Shibasaki M. Org. Lett. 2016; 18: 2391
- 10b Liu Z, Takeuchi T, Pluta R, Arteaga F, Kumagai N, Shibasaki M. Org. Lett. 2017; 19: 710
- 11 Teng B, Chen W, Dong S, Kee CW, Gandamana DA, Zong L, Tan C.-H. J. Am. Chem. Soc. 2016; 138: 9935
- 12a Suzuki H, Sato I, Yamashita Y, Kobayashi S. J. Am. Chem. Soc. 2015; 137: 4336
- 12b Sato I, Suzuki H, Yamashita Y, Kobayashi S. Org. Chem. Front. 2016; 3: 1241
- 12c Yamashita Y, Kobayashi S. Chem. Eur. J. 2018; 24: 10
- 13 Yamashita Y, Noguchi A, Fushimi S, Hatanaka M, Kobayashi S. J. Am. Chem. Soc. 2021; 143: 5598
- 14a Zook HD, Gumby WL. J. Am. Chem. Soc. 1960; 82: 1386
- 14b Kuwajima I, Nakamura E. J. Am. Chem. Soc. 1975; 97: 3257
- 15a O’Donnell MJ, Delgado F, Hostettler C, Schwesinger R. Tetrahedron Lett. 1998; 39: 8775
- 15b Mettath S, Srikanth GS. C, Dangerfield BS, Castle SL. J. Org. Chem. 2004; 69: 6489
- 15c Ma B, Parkinson JL, Castle SL. Tetrahedron Lett. 2007; 48: 2083
- 16 Xu C, Qi Y, Yang X, Li X, Li Z, Bai L. Org. Lett. 2021; 23: 2890
- 17 Representative Procedure for Asymmetric Alkylation A Schlenk tube was charged with 1 (0.2 mmol) and 3k (0.02 mmol, 18.4 mg) under a nitrogen atmosphere, then NaHMDS (0.2 mmol, 0.4 mL, 0.5 M in toluene) and 2 (0.4 mmol) in toluene (1.0 mL) were added separately. The reaction mixture was stirred at –80 °C and monitored by TLC. When completed, the reaction mixture was diluted with water (5.0 mL) and extracted with ethyl acetate (3 × 10 mL). The combined organic layer was washed with brine, dried with anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by chromatography column on silica gel (ethyl acetate/petroleum ether = 1:30 to 1:10) to afford product (S)-4. (S)-2-Methyl-N,N,3-triphenylpropanamide (4a) Colorless oil; 60% yield; 43% ee; [α]D 25 –79.6 (c 1.0, CHCl3). HRMS (ESI-TOF): m/z [M + H]+ calcd for C22H22NO+: 316.1695; found: 316.1695. 1H NMR (500 MHz, CDCl3): δ = 7.50–6.67 (m, 15 H), 3.06 (dd, J = 15.0, 10.0 Hz, 1H), 2.92–2.72 (m, 1 H), 2.59 (dd, J = 15.0, 5.0 Hz, 1 H), 1.20 (d, J = 5.0 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 176.2, 142.9, 140.1, 129.7, 129.5, 128.9, 128.4, 126.6, 126.5, 41.1, 40.2, 18.4. HPLC (Chiralpak Daicel AS-H, hexane/isopropanol = 95:5, 0.5 mL/min, 254 nm), t R(min) = 13.9 min, t R(maj) = 22.9 min.
For selected examples, see:
For selected reviews, see:
For selected examples, see: