Rofo 2022; 194(10): 1100-1108
DOI: 10.1055/a-1800-8692
Review

Praktische Aspekte neuerer MRT-Techniken in der Neuroradiologie: Teil 1–3D, Dixon-Techniken und Artefaktreduktion

Article in several languages: English | deutsch
1   Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, Medical Campus University of Oldenburg, Germany
2   Research Center Neurosensory Science, University of Oldenburg, Germany
3   Clinic for Radiology, University Hospital Münster, Germany
,
Benoit Billebaut
3   Clinic for Radiology, University Hospital Münster, Germany
4   School for Radiologic Technologists, University Hospital Münster, Germany
,
3   Clinic for Radiology, University Hospital Münster, Germany
,
Catalin George Iacoban
1   Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, Medical Campus University of Oldenburg, Germany
,
Olga Alykova
1   Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, Medical Campus University of Oldenburg, Germany
,
Christoph Schülke
5   Radiologie Salzstraße, Münster, Germany
,
Maike Gerdes
1   Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, Medical Campus University of Oldenburg, Germany
,
Harald Kugel
3   Clinic for Radiology, University Hospital Münster, Germany
,
Sojan Neduvakkattu
3   Clinic for Radiology, University Hospital Münster, Germany
,
Holger Bösenberg
1   Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, Medical Campus University of Oldenburg, Germany
,
Christian Mathys
1   Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, Medical Campus University of Oldenburg, Germany
2   Research Center Neurosensory Science, University of Oldenburg, Germany
6   Department of Diagnostic and Interventional Radiology, University of Düsseldorf, Germany
› Author Affiliations

Zusammenfassung

Hintergrund Neuere MR-Techniken ermöglichen es, gestiegene Anforderungen an Bildqualität zu erfüllen, Patienten trotz zu erwartender Artefakte zu untersuchen und neue Untersuchungsstrategien in der Neuroradiologie zu entwickeln. Dies sind unter anderem verbesserte 3D-Techniken, Methoden zur Verminderung von Bewegungs- und Metall-Artefakten und Dixon-Techniken.

Methode Narrative Übersichtsarbeit mit Fortbildungsschwerpunkt basierend auf aktueller Literaturrecherche und praktischen Erfahrungen verschiedener Berufsgruppen (ärztliches Personal, MTRA, MR-Physik/Technik) und mit Geräten unterschiedlicher Hersteller.

Ergebnisse und Schlussfolgerungen Unter den 3D-Turbo-Spin-Echo-Techniken fällt insbesondere die 3D FLAIR-Sequenz durch vielfältige Einsatzmöglichkeiten in Routineprotokollen auf. Neben der Erkennbarkeit kleinerer Läsionen ermöglicht sie eine präzisere Verlaufsbeurteilung und eine gute Erkennbarkeit auch extrazerebraler Läsionen. 3D-Sequenzen sind zunehmend etabliert zur Beurteilung arterieller Gefäßwände, der Liquorräume und peripherer Nerven. Weiterentwickelte hybrid-radiale Sequenzen ermöglichen ein breiteres Anwendungsspektrum zur Vermeidung von Bewegungsartefakten. Für die Verringerung von Suszeptibilitätsartefakten stehen nun mehrere unterschiedliche Optionen zur Verfügung, die möglichst gezielt eingesetzt werden sollten. Die neuen Techniken ermöglichen zum Teil gezielte Anpassungen zur Erzielung der gewünschten diagnostischen Aussagefähigkeit. Dixon-Techniken ermöglichen es, über eine homogene Fettsättigung in Übergangsregionen hinaus, mit einer Messung mehrere Bildkontraste zu erzielen.

Kernaussagen:

  • 3D FLAIR des Gehirns kann 2 D FLAIR meist ersetzen und ermöglicht genauere und breiter einsetzbare Untersuchungsprotokolle.

  • Andere 3D-TSE-Sequenzen ersetzen für bestimmte Indikationen zunehmend 2D-TSE-Sequenzen.

  • Die Weiterentwicklung von Artefaktreduktionstechniken vergrößert bei Bewegungsunruhe und bei Implantaten kontinuierlich das Potenzial für diagnostisch aussagefähige Untersuchungen.

  • Dixon ermöglicht homogene Fettsättigung und erzielt gleichzeitig mehrere Bildkontraste.

Zitierweise

  • Sundermann B, Billebaut B, Bauer J et al. Practical Aspects of novel MRI Techniques in Neuroradiology: Part 1–3D Acquisitions, Dixon Techniques and Artefact Reduction. Fortschr Röntgenstr 2022; 194: 1100 – 1109



Publication History

Received: 31 August 2021

Accepted: 05 March 2022

Article published online:
11 May 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Rovira A, Wattjes MP, Tintore M. et al. Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis-clinical implementation in the diagnostic process. Nat Rev Neurol 2015; 11: 471-482
  • 2 Filippi M, Preziosa P, Banwell BL. et al. Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines. Brain 2019; 142: 1858-1875
  • 3 Traboulsee A, Simon JH, Stone L. et al. Revised Recommendations of the Consortium of MS Centers Task Force for a Standardized MRI Protocol and Clinical Guidelines for the Diagnosis and Follow-Up of Multiple Sclerosis. AJNR Am J Neuroradiol 2016; 37: 394-401
  • 4 Ellingson BM, Bendszus M, Boxerman J. et al. Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials. Neuro Oncol 2015; 17: 1188-1198
  • 5 Kaufmann TJ, Smits M, Boxerman J. et al. Consensus recommendations for a standardized brain tumor imaging protocol for clinical trials in brain metastases. Neuro Oncol 2020; 22: 757-772
  • 6 Wattjes MP, Ciccarelli O, Reich DS. et al. 2021 MAGNIMS-CMSC-NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol 2021; 20: 653-670
  • 7 Viallon M, Cuvinciuc V, Delattre B. et al. State-of-the-art MRI techniques in neuroradiology: principles, pitfalls, and clinical applications. Neuroradiology 2015; 57: 441-467
  • 8 Mugler 3rd JP. Optimized three-dimensional fast-spin-echo MRI. J Magn Reson Imaging 2014; 39: 745-767
  • 9 Hennig J, Nauerth A, Friedburg H. RARE imaging: a fast imaging method for clinical MR. Magn Reson Med 1986; 3: 823-833
  • 10 Chagla GH, Busse RF, Sydnor R. et al. Three-dimensional fluid attenuated inversion recovery imaging with isotropic resolution and nonselective adiabatic inversion provides improved three-dimensional visualization and cerebrospinal fluid suppression compared to two-dimensional flair at 3 tesla. Invest Radiol 2008; 43: 547-551
  • 11 Kallmes DF, Hui FK, Mugler JP. et al. Suppression of cerebrospinal fluid and blood flow artifacts in FLAIR MR imaging with a single-slab three-dimensional pulse sequence: initial experience. Radiology 2001; 221: 251-255
  • 12 Saranathan M, Worters PW, Rettmann DW. et al. Physics for clinicians: Fluid-attenuated inversion recovery (FLAIR) and double inversion recovery (DIR) Imaging. J Magn Reson Imaging 2017; 46: 1590-1600
  • 13 Kakeda S, Korogi Y, Hiai Y. et al. Pitfalls of 3D FLAIR brain imaging: a prospective comparison with 2D FLAIR. Acad Radiol 2012; 19: 1225-1232
  • 14 Lecler A, Bouzad C, Deschamps R. et al. Optimizing 3D FLAIR to detect MS lesions: pushing past factory settings for precise results. J Neurol 2019; 266: 2786-2795
  • 15 Lecler A, El Sanharawi I, El Methni J. et al. Improving Detection of Multiple Sclerosis Lesions in the Posterior Fossa Using an Optimized 3D-FLAIR Sequence at 3T. AJNR Am J Neuroradiol 2019; 40: 1170-1176
  • 16 Polak P, Magnano C, Zivadinov R. et al. 3D FLAIRED: 3D fluid attenuated inversion recovery for enhanced detection of lesions in multiple sclerosis. Magn Reson Med 2012; 68: 874-881
  • 17 Algin O, Turkbey B. Evaluation of aqueductal stenosis by 3D sampling perfection with application-optimized contrasts using different flip angle evolutions sequence: preliminary results with 3T MR imaging. AJNR Am J Neuroradiol 2012; 33: 740-746
  • 18 Levy LM, Di Chiro G, Brooks RA. et al. Spinal cord artifacts from truncation errors during MR imaging. Radiology 1988; 166: 479-483
  • 19 Lindenholz A, van der Kolk AG, Zwanenburg JJM. et al. The Use and Pitfalls of Intracranial Vessel Wall Imaging: How We Do It. Radiology 2018; 286: 12-28
  • 20 Leao DJ, Agarwal A, Mohan S. et al. Intracranial vessel wall imaging: applications, interpretation, and pitfalls. Clin Radiol 2020; 75: 730-739
  • 21 Zhu C, Tian B, Chen L. et al. Accelerated whole brain intracranial vessel wall imaging using black blood fast spin echo with compressed sensing (CS-SPACE). MAGMA 2018; 31: 457-467
  • 22 Guggenberger K, Krafft AJ, Ludwig U. et al. High-resolution Compressed-sensing T1 Black-blood MRI: A New Multipurpose Sequence in Vascular Neuroimaging?. Clin Neuroradiol 2019;
  • 23 Park CJ, Cha J, Ahn SS. et al. Contrast-Enhanced High-Resolution Intracranial Vessel Wall MRI with Compressed Sensing: Comparison with Conventional T1 Volumetric Isotropic Turbo Spin Echo Acquisition Sequence. Korean J Radiol 2020; 21: 1334-1344
  • 24 Okuchi S, Fushimi Y, Okada T. et al. Visualization of carotid vessel wall and atherosclerotic plaque: T1-SPACE vs. compressed sensing T1-SPACE. Eur Radiol 2019; 29: 4114-4122
  • 25 Cho SJ, Jung SC, Suh CH. et al. High-resolution magnetic resonance imaging of intracranial vessel walls: Comparison of 3D T1-weighted turbo spin echo with or without DANTE or iMSDE. PLoS One 2019; 14: e0220603
  • 26 Riederer I, Sollmann N, Muhlau M. et al. Gadolinium-Enhanced 3D T1-Weighted Black-Blood MR Imaging for the Detection of Acute Optic Neuritis. AJNR Am J Neuroradiol 2020;
  • 27 Mugler 3rd JP, Brookeman JR. Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 1990; 15: 152-157
  • 28 Haacke EM, Xu Y, Cheng YC. et al. Susceptibility weighted imaging (SWI). Magn Reson Med 2004; 52: 612-618
  • 29 Liu S, Buch S, Chen Y. et al. Susceptibility-weighted imaging: current status and future directions. NMR Biomed 2017; 30
  • 30 Guerini H, Omoumi P, Guichoux F. et al. Fat Suppression with Dixon Techniques in Musculoskeletal Magnetic Resonance Imaging: A Pictorial Review. Semin Musculoskelet Radiol 2015; 19: 335-347
  • 31 Feng L, Benkert T, Block KT. et al. Compressed sensing for body MRI. J Magn Reson Imaging 2017; 45: 966-987
  • 32 Conklin J, Longo MGF, Cauley SF. et al. Validation of Highly Accelerated Wave-CAIPI SWI Compared with Conventional SWI and T2*-Weighted Gradient Recalled-Echo for Routine Clinical Brain MRI at 3T. AJNR Am J Neuroradiol 2019; 40: 2073-2080
  • 33 Pipe JG. Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 1999; 42: 963-969
  • 34 Finkenzeller T, Wendl CM, Lenhart S. et al. BLADE Sequences in Transverse T2-weighted MR Imaging of the Cervical Spine. Cut-off for Artefacts?. Rofo 2015; 36: 102-108
  • 35 Alibek S, Adamietz B, Cavallaro A. et al. Contrast-enhanced T1-weighted fluid-attenuated inversion-recovery BLADE magnetic resonance imaging of the brain: an alternative to spin-echo technique for detection of brain lesions in the unsedated pediatric patient?. Acad Radiol 2008; 15: 986-995
  • 36 Mavroidis P, Giankou E, Tsikrika A. et al. Brain imaging: Comparison of T1W FLAIR BLADE with conventional T1W SE. Magn Reson Imaging 2017; 37: 234-242
  • 37 Vertinsky AT, Rubesova E, Krasnokutsky MV. et al. Performance of PROPELLER relative to standard FSE T2-weighted imaging in pediatric brain MRI. Pediatr Radiol 2009; 39: 1038-1047
  • 38 Lavdas E, Mavroidis P, Kostopoulos S. et al. Reduction of motion, truncation and flow artifacts using BLADE sequences in cervical spine MR imaging. Magn Reson Imaging 2015; 33: 194-200
  • 39 Zaitsev M, Maclaren J, Herbst M. Motion artifacts in MRI: A complex problem with many partial solutions. J Magn Reson Imaging 2015; 42: 887-901
  • 40 Glover GH, Pauly JM. Projection reconstruction techniques for reduction of motion effects in MRI. Magn Reson Med 1992; 28: 275-289
  • 41 Lee S-J, Yu S-M. The image evaluation of iterative motion correction reconstruction algorithm PROPELLER T2-weighted imaging compared with MultiVane T2-weighted imaging. Journal of the Korean Physical Society 2017; 71: 238-243
  • 42 Bangiyev L, Raz E, Block TK. et al. Evaluation of the orbit using contrast-enhanced radial 3D fat-suppressed T1 weighted gradient echo (Radial-VIBE) sequence. Br J Radiol 2015; 88: 20140863
  • 43 Wu X, Raz E, Block TK. et al. Contrast-enhanced radial 3D fat-suppressed T1-weighted gradient-recalled echo sequence versus conventional fat-suppressed contrast-enhanced T1-weighted studies of the head and neck. Am J Roentgenol 2014; 203: 883-889
  • 44 Chandarana H, Block KT, Winfeld MJ. et al. Free-breathing contrast-enhanced T1-weighted gradient-echo imaging with radial k-space sampling for paediatric abdominopelvic MRI. Eur Radiol 2014; 24: 320-326
  • 45 Chandarana H, Block TK, Rosenkrantz AB. et al. Free-breathing radial 3D fat-suppressed T1-weighted gradient echo sequence: a viable alternative for contrast-enhanced liver imaging in patients unable to suspend respiration. Invest Radiol 2011; 46: 648-653
  • 46 Hedderich DM, Weiss K, Spiro JE. et al. Clinical Evaluation of Free-Breathing Contrast-Enhanced T1w MRI of the Liver using Pseudo Golden Angle Radial k-Space Sampling. Rofo 2018; 190: 601-609
  • 47 Xue Y, Yu J, Kang HS. et al. Automatic coil selection for streak artifact reduction in radial MRI. Magn Reson Med 2012; 67: 470-476
  • 48 Dillenseger JP, Moliere S, Choquet P. et al. An illustrative review to understand and manage metal-induced artifacts in musculoskeletal MRI: a primer and updates. Skeletal Radiol 2016; 45: 677-688
  • 49 Talbot BS, Weinberg EP. MR Imaging with Metal-suppression Sequences for Evaluation of Total Joint Arthroplasty. Radiographics 2016; 36: 209-225
  • 50 Khodarahmi I, Isaac A, Fishman EK. et al. Metal About the Hip and Artifact Reduction Techniques: From Basic Concepts to Advanced Imaging. Semin Musculoskelet Radiol 2019; 23: e68-e81
  • 51 Jungmann PM, Agten CA, Pfirrmann CW. et al. Advances in MRI around metal. J Magn Reson Imaging 2017; 46: 972-991
  • 52 Cho ZH, Kim DJ, Kim YK. Total inhomogeneity correction including chemical shifts and susceptibility by view angle tilting. Med Phys 1988; 15: 7-11
  • 53 Lu W, Pauly KB, Gold GE. et al. SEMAC: Slice Encoding for Metal Artifact Correction in MRI. Magn Reson Med 2009; 62: 66-76
  • 54 Koch KM, Lorbiecki JE, Hinks RS. et al. A multispectral three-dimensional acquisition technique for imaging near metal implants. Magn Reson Med 2009; 61: 381-390
  • 55 Porter DA, Heidemann RM. High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging and a two-dimensional navigator-based reacquisition. Magn Reson Med 2009; 62: 468-475
  • 56 Fritz J, Ahlawat S, Demehri S. et al. Compressed Sensing SEMAC: 8-fold Accelerated High Resolution Metal Artifact Reduction MRI of Cobalt-Chromium Knee Arthroplasty Implants. Invest Radiol 2016; 51: 666-676
  • 57 Worters PW, Sung K, Stevens KJ. et al. Compressed-sensing multispectral imaging of the postoperative spine. J Magn Reson Imaging 2013; 37: 243-248
  • 58 Frost R, Jezzard P, Douaud G. et al. Scan time reduction for readout-segmented EPI using simultaneous multislice acceleration: Diffusion-weighted imaging at 3 and 7 Tesla. Magn Reson Med 2015; 74: 136-149
  • 59 Ahlawat S, Stern SE, Belzberg AJ. et al. High-resolution metal artifact reduction MR imaging of the lumbosacral plexus in patients with metallic implants. Skeletal Radiol 2017; 46: 897-908
  • 60 Dixon WT. Simple proton spectroscopic imaging. Radiology 1984; 153: 189-194
  • 61 Glover GH, Schneider E. Three-point Dixon technique for true water/fat decomposition with B0 inhomogeneity correction. Magn Reson Med 1991; 18: 371-383
  • 62 Hardy PA, Hinks RS, Tkach JA. Separation of fat and water in fast spin-echo MR imaging with the three-point Dixon technique. J Magn Reson Imaging 1995; 5: 181-185
  • 63 Ma J. Dixon techniques for water and fat imaging. J Magn Reson Imaging 2008; 28: 543-558
  • 64 Romu T, Dahlstrom N, Leinhard OD. et al. Robust water fat separated dual-echo MRI by phase-sensitive reconstruction. Magn Reson Med 2017; 78: 1208-1216
  • 65 Gaddikeri S, Mossa-Basha M, Andre JB. et al. Optimal Fat Suppression in Head and Neck MRI: Comparison of Multipoint Dixon with 2 Different Fat-Suppression Techniques, Spectral Presaturation and Inversion Recovery, and STIR. AJNR Am J Neuroradiol 2018; 39: 362-368
  • 66 Wendl CM, Eiglsperger J, Dendl LM. et al. Fat suppression in magnetic resonance imaging of the head and neck region: is the two-point DIXON technique superior to spectral fat suppression?. Br J Radiol 2018; 91: 20170078
  • 67 Ma J, Jackson EF, Kumar AJ. et al. Improving fat-suppressed T2-weighted imaging of the head and neck with 2 fast spin-echo dixon techniques: initial experiences. AJNR Am J Neuroradiol 2009; 30: 42-45
  • 68 Krinsky G, Rofsky NM, Weinreb JC. Nonspecificity of short inversion time inversion recovery (STIR) as a technique of fat suppression: pitfalls in image interpretation. Am J Roentgenol 1996; 166: 523-526