Synlett 2022; 33(08): 767-770
DOI: 10.1055/a-1807-8282
letter

Palladium-Catalyzed Regiodivergent Decarboxylative Hydrothiocarbonylation of Vinylarenes Using Oxalic Acid Monothioesters

Kang Li
a   Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. of China
,
Ni Shen
a   Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. of China
,
Can Liu
a   Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. of China
,
Rui Shang
a   Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. of China
b   Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
› Institutsangaben
This work was financially supported by the National Natural Science Foundation of China (NSFC) and the University of Science and Technology of China (USTC, Grant Number GG 2065010002).


Abstract

Oxalic acid monothioester (OAM), an easily accessible and bench-stable reagent, is reported herein as a synthetic equivalent of thioester for palladium-catalyzed decarboxylative hydrothiocarbonylation of vinylarenes to achieve both branched and linear regioselectivity. The reactions provided user-friendly synthetic methods for preparation of α- or β-arylated propionic acid thioesters from vinylarenes without directly handling toxic carbon monoxide and odorous thiols.

Supporting Information



Publikationsverlauf

Eingereicht: 22. Februar 2022

Angenommen nach Revision: 24. März 2022

Accepted Manuscript online:
24. März 2022

Artikel online veröffentlicht:
22. April 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a De Duve C. Am. Sci. 1995; 83: 428
    • 1b Hamilton GS, Wu Y.-Q, Limburg DC, Wilkinson DE, Vaal MJ, Li J.-H, Thomas C, Huang W, Sauer H, Ross DT, Soni R, Chen Y, Guo H, Howorth P, Valentine H, Liang S, Spicer D, Fuller M, Steiner JP. J. Med. Chem. 2002; 45: 3549
    • 1c Smietana M, Clayette P, Mialocq P, Vasseur J, Oiry J. Bioorg. Chem. 2008; 36: 133
    • 1d Hong J, Luesch H. Nat. Prod. Rep. 2012; 29: 449
    • 2a Trauger JW, Kohli RM, Mootz HD, Marahiel MA, Walsh CT. Nature 2000; 407: 215
    • 2b Staunton J, Weissman KJ. Nat. Prod. Rep. 2001; 18: 380
  • 3 Blanco-Canosa JB, Nardone B, Albericio F, Dawson PE. J. Am. Chem. Soc. 2015; 137: 7197
    • 4a Kohli RM, Walsh CT, Burkart MD. Nature 2002; 418: 658
    • 4b Wittenberg R, Srogl J, Egi M, Liebeskind LS. Org. Lett. 2003; 5: 3033
    • 4c Ying Y, Taori K, Kim H, Hong J, Luesch H. J. Am. Chem. Soc. 2008; 130: 8455
    • 4d Prokopcová H, Kappe CO. Angew. Chem. Int. Ed. 2009; 48: 2276
    • 4e Tatsuta K, Tanaka H, Tsukagoshi H, Kashima T, Hosokawa S. Tetrahedron Lett. 2010; 51: 5546
    • 4f McGrath NA, Raines RT. Acc. Chem. Res. 2011; 44: 752
    • 4g Sun F, Li M, He C, Wang B, Li B, Sui X, Gu Z. J. Am. Chem. Soc. 2016; 138: 7456
    • 4h Wu Q, Wu Z, Qu X, Liu W. J. Am. Chem. Soc. 2012; 134: 17342
    • 4i Mullowney MW, McClure RA, Robey MT, Kelleher NL, Thomson RJ. Nat. Prod. Rep. 2018; 35: 847
    • 5a Vieira TO, Green MJ, Alper H. Org. Lett. 2006; 8: 6143
    • 5b Barnard CF. J. Organometallics 2008; 27: 5402
    • 5c Li C.-F, Xiao W.-J, Alper H. J. Org. Chem. 2009; 74: 888
    • 5d Burhardt MN, Taaning RH, Skrydstrup T. Org. Lett. 2013; 15: 948
    • 5e Burhardt MN, Ahlburg A, Skrydstrup T. J. Org. Chem. 2014; 79: 11830
    • 5f Kazemi M, Shiri L. J. Sulfur Chem. 2015; 36: 613
    • 5g Ren W, Chang W, Wang Y, Li J, Shi Y. Org. Lett. 2015; 17: 3544
    • 5h Gehrtz PH, Hirschbeck V, Fleischer I. Chem. Commun. 2015; 51: 12574
    • 5i Li H, Dong K, Jiao H, Neumann H, Jackstell R, Beller M. Nat. Chem. 2016; 8: 1159
    • 5j Liu J, Yang J, Ferretti F, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2019; 58: 4690
    • 6a Shang R, Fu Y, Li J.-B, Zhang S.-L, Guo Q.-X, Liu L. J. Am. Chem. Soc. 2009; 131: 5738
    • 6b Cheng W.-M, Shang R, Yu H.-Z, Fu Y. Chem. Eur. J. 2015; 21: 13191
    • 6c Friis SD, Lindhardt AT, Skrydstrup T. Acc. Chem. Res. 2016; 49: 594
  • 7 Zhao B, Fu Y, Shang R. Org. Lett. 2019; 21: 9521
  • 8 Ai H.-J, Lu W, Wu X.-F. Angew. Chem. Int. Ed. 2021; 60: 17178
    • 9a Louie J, Hartwig JF. J. Am. Chem. Soc. 1995; 117: 11598
    • 9b Xiao W.-J, Vasapollo G, Alper H. J. Org. Chem. 1998; 63: 2609
    • 9c Xiao W.-J, Alper H. J. Org. Chem. 1998; 63: 7939
    • 9d Xiao W.-J, Vasapollo G, Alper H. J. Org. Chem. 2000; 65: 4138
    • 9e Xiao W.-J, Alper H. J. Org. Chem. 2001; 66: 6229
    • 9f Su W, Urgaonkar S, McLaughlin PA, Verkade JG. J. Am. Chem. Soc. 2004; 126: 16433
    • 9g Hirschbeck V, Gehrtz PH, Fleischer I. J. Am. Chem. Soc. 2016; 138: 16794
  • 10 Wang X, Wang B, Yin X, Yu W, Liao Y, Ye J, Wang M, Hu L, Liao J. Angew. Chem. Int. Ed. 2019; 58: 12264
  • 11 Ai H.-J, Zhao F, Geng H.-Q, Wu X.-F. ACS Catal. 2021; 11: 3614
  • 12 Zhang Y, Torker S, Sigrist M, Bregovic N, Dydio P. J. Am. Chem. Soc. 2020; 142: 18251
  • 13 Liu P, Hu B, Li Y, Ji G.-C, Ma M.-Y, Bi S, Jiang Y.-Y. J. Org. Chem. 2021; 86: 12988
  • 14 Yu W, Han J, Fang D, Wang M, Liao J. Org. Lett. 2021; 23: 2482
  • 15 Kobayashi S, Makiko A. Chem. Rev. 2009; 109: 5288
  • 16 General Procedure for Synthesis of 52-Vinyl naphthalene (1.0 equiv, 0.2 mmol), oxalic acid monothioester (1.5 equiv, 0.3 mmol), [Pd(allyl)Cl]2 (2 mol%, 1.5 mg), and (2-py)PPh2 (8 mol%, 4.3 mg) were placed in a 10 mL transparent Schlenk tube equipped with a stirring bar. The tube was evacuated and filled with argon (three times). To these solids, DCE (2.0 mL) was added via a gastight syringe under argon atmosphere. The mixture was stirred at 80 °C for 18 h. The mixture was quenched with brine and extracted with ethyl acetate (3 × 10 mL). The organic layers were combined and concentrated under vacuo. The product was purified by flash column chromatography on silica gel column (eluent: petroleum ether/ethyl acetate = 50:1) to afford 5 (55.2 mg, 90%); mp 95–97 °C. 1H NMR (400 MHz, CDCl3): δ = 7.88–7.81 (m, 4 H), 7.53–7.46 (m, 3 H), 7.24 (d, J = 8.1 Hz, 2 H), 7.19 (d, J = 8.3 Hz, 2 H), 4.18 (q, J = 7.0 Hz, 1 H), 2.36 (s, 3 H), 1.68 (d, J = 7.1 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 199.4, 139.5, 137.1, 134.4, 133.5, 132.8, 129.9, 128.5, 127.9, 127.7, 127.0, 126.2, 126.0, 125.9, 124.3, 54.1, 21.3, 18.7.