Synlett 2022; 33(14): 1383-1390 DOI: 10.1055/a-1809-7768
cluster
Organic Chemistry in Thailand
Brønsted Acidic Ionic Liquid Catalyzed Three-Component Friedel–Crafts Reaction for the Synthesis of Unsymmetrical Triarylmethanes
Suttida Rinkam
a
Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Sangesook, Chonburi 20131, Thailand
,
Warapong Senapak
a
Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Sangesook, Chonburi 20131, Thailand
,
Sarayut Watchasit
c
Nuclear Magnetic Resonance Spectroscopic Laboratory, Science Innovation Facility, Faculty of Science, Burapha University, Chonburi 20131, Thailand
,
Rungnapha Saeeng
a
Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Sangesook, Chonburi 20131, Thailand
b
The Research Unit in Synthetic Compounds and Synthetic Analogues from Natural Product for Drug Discovery (RSND), Burapha University, Chonburi 20131, Thailand
,
a
Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Sangesook, Chonburi 20131, Thailand
b
The Research Unit in Synthetic Compounds and Synthetic Analogues from Natural Product for Drug Discovery (RSND), Burapha University, Chonburi 20131, Thailand
› Institutsangaben
Abstract
A convenient and practical method for the synthesis of unsymmetrical triarylmethanes was demonstrated through a one-pot three-component double Friedel–Crafts reaction of various aliphatic, aromatic, or heteroaromatic aldehydes with N ,N -dialkylanilines and indoles by using a Brønsted acidic ionic liquid as the catalyst. This method was successfully applied under metal- and solvent-free conditions at 80 °C, affording the corresponding unsymmetrical triarylmethane products in moderate to high yields from a broad range of substrates. In addition, the mechanism of this reaction was studied by quantitative NMR analysis.
Key words triarylmethanes - diarylmethylindoles - Friedel–Crafts reaction - Brønsted acid - ionic liquid - metal-free conditions
References and Notes
1a
Palchaudhuri R,
Nesterenko V,
Hergenrother PJ.
J. Am. Chem. Soc. 2008; 130: 10274
1b
Shagufta Shagufta,
Srivastava AK,
Sharma R,
Mishra R,
Balapure AK,
Murthy PS. R,
Panda G.
Bioorg. Med. Chem. 2006; 14: 1497
1c
Natarajan A,
Fan Y.-H,
Chen H,
Guo Y,
Iyasere J,
Harbinski F,
Christ WJ,
Aktas H,
Halperin JA.
J. Med. Chem. 2004; 47: 1882
1d
Finer J,
Chabala J,
Evan L.
WO 2002056880, 2002
1e
Schnick RA.
Prog. Fish-Cult. 1988; 50: 190
1f
Küçükkılınç TT,
Ozer I.
Chem.-Biol. Interact. 2008; 175: 309
1g
Lézé M.-P,
Le Borgne M,
Marchand P,
Loquet D,
Kogler M,
Le Baut G,
Palusczak A,
Hartmann RW.
J. Enzym. Inhib. Med. Chem. 2004; 19: 549
1h
Singh P,
Manna SK,
Jana AK,
Saha T,
Mishra P,
Bera S,
Parai MK,
Kumar M SL,
Mondal S,
Trivedi P,
Chaturvedi V,
Singh S,
Sinha S,
Panda G.
Eur. J. Med. Chem. 2015; 95: 357
2a
Gurr E.
Synthetic Dyes in Biology, Medicine and Chemistry. Academic; New York: 1971
2b
Muthyala R,
Katritzky AR,
Lan X.
Dyes Pigm. 1994; 25: 303
2c
Irie M.
J. Am. Chem. Soc. 1983; 105: 2078
2d
Fischer D,
Caseri WR,
Hähner G.
J. Colloid Interface Sci. 1998; 198: 337
2e
Dong C.-p,
Kodama S,
Uematsu A,
Nomoto A,
Ueshima M,
Ogawa A.
J. Org. Chem. 2017; 82: 12530
3a
Duxbury DF.
Chem. Rev. 1993; 93: 381
3b
Chen X,
Pradhan T,
Wang F,
Kim JS,
Yoon J.
Chem. Rev. 2012; 112: 1910
3c
Beija M,
Afonso CA. M,
Martinho JM. G.
Chem. Soc. Rev. 2009; 38: 2410
3d
Urano Y,
Kamiya M,
Kanda K,
Ueno T,
Hirose K,
Nagano T.
J. Am. Chem. Soc. 2005; 127: 4888
3e
Bhasikuttan AC,
Mohanty J,
Nau WM,
Pal H.
Angew. Chem. 2007; 119: 4198
3f
Abe H,
Wang J,
Furukawa K,
Oki K,
Uda M,
Tsuneda S,
Ito Y.
Bioconjugate Chem. 2008; 19: 1219
4a
Panda G,
Parai MK,
Das SK,
Shagufta Shagufta,
Sinha M,
Chaturvedi V,
Srivastava AK,
Manju YS,
Gaikwad AN,
Sinha S.
Eur. J. Med. Chem. 2007; 42: 410
4b
Reddy BV. S,
Reddy MR,
Madan C,
Kumar KP. Rao M. S.
Bioorg. Med. Chem. Lett. 2010; 20: 7507
4c
Rao VK,
Chhikara B,
Shirazi AN,
Tiwari R,
Parang K,
Kumar A.
Bioorg. Med. Chem. Lett. 2011; 21: 3511
4d
Contractor R,
Samudio IJ,
Estrov Z,
Harris D,
McCubrey JA,
Safe SH,
Andreeff M,
Konopleva M.
Cancer Res. 2005; 65: 2890
4e
Deng J,
Sanchez T,
Neamati N,
Briggs JM.
J. Med. Chem. 2006; 49: 1684
5a
Bindal RD,
Golab JT,
Katzenellenbogen JA.
J. Am. Chem. Soc. 1990; 112: 7861
5b
Bai L,
Masukawa N,
Yamaki M,
Takagi S.
Phytochemistry 1998; 47: 1637
5c
Cutignano A,
Bifulco G,
Bruno I,
Casapullo A,
Gomez-Paloma L,
Riccio R.
Tetrahedron 2000; 56: 3743
5d
Bifulco G,
Bruno I,
Riccio R,
Lavayre J,
Bourdy G.
J. Nat. Prod. 1995; 58: 1254
6a
Deb ML,
Deka BD,
Rahman I,
Baruah PK.
Tetrahedron Lett. 2018; 59: 4430
6b
Reddy DN. K,
Chandrasekhar KB,
Ganesh YS. S,
Gorantla SS,
Ramanjaneyulu S,
Kumar KS,
Pal M.
Synth. Commun. 2015; 45: 513
6c
Kothandapani J,
Ganesan A,
Vairaprakash P,
Ganesan SS.
Tetrahedron Lett. 2015; 56: 2238
6d
Hekmatshoar R,
Mousavizadeh F,
Rahnamafar R.
J. Chem. Sci. (Amritsar, India) 2013; 125: 1009
6e
Ganesan SS,
Ganesan A.
Tetrahedron Lett. 2014; 55: 694
6f
Kothandapani J,
Ganesan A,
Ganesan SS.
Tetrahedron Lett. 2015; 56: 5568
6g
Najafi E,
Behbahani FK.
Russ. J. Org. Chem. 2017; 53: 454
6h
Zhang X,
Zhang X,
Li N,
Xu X,
Qiu R,
Yin S.
Tetrahedron Lett. 2014; 55: 120
6i
Prakash GK. S,
Panja C,
Shakhmin A,
Shah E,
Mathew T,
Olah G.
J. Org. Chem. 2009; 74: 8659
6j
Liu J,
He T,
Wang L.
Tetrahedron 2011; 67: 3420
6k
Basbero M,
Cadamuro S,
Dughera S,
Magistris C,
Venturello P.
Org. Biomol. Chem. 2011; 9: 8393
6l
Jaratjaroonphong J,
Krajangsri S,
Reutrakul V.
Tetrahedron Lett. 2012; 53: 2476
7a
Tong J,
Yang C,
Xu D.-z.
Synthesis 2016; 48: 3559
7b
Wang A,
Zheng X,
Zhao Z,
Li C,
Cui Y,
Zheng X,
Yin J,
Yang G.
Appl. Catal., A 2014; 482: 198
7c
Khaligh NG,
Mihankhah T,
Johan MR,
Ching JJ.
J. Mol. Liq. 2018; 259: 260
7d
Mukhopadhyay C,
Datta A,
Tapaswi PK.
Synth. Commun. 2012; 42: 2453
7e
Rajesh UC,
Kholiya R,
Thakur A,
Rawat DS.
Tetrahedron Lett. 2015; 56: 1790
7f
Garkoti C,
Shabir J,
Gupta P,
Sharma M,
Mozumdar S.
New J. Chem. 2017; 41: 15545
7g
Yeung K.-S,
Farkas ME,
Qiu Z,
Yang Z.
Tetrahedron Lett. 2002; 43: 5793
7h
Amarasekara AS.
Chem. Rev. 2016; 116: 6133
7i
Zare A,
Abi F,
Moosavi-Zare AR,
Beyzavi MH,
Zolfigol MA.
J. Mol. Liq. 2013; 178: 113
7j
He L,
Qin S,
Chang T,
Sun Y,
Gao X.
Catal. Sci. Technol. 2013; 3: 1102
7k
Chen Z,
Zhu Q,
Su W.
Tetrahedron Lett. 2011; 52: 2601
7l
Dong F,
Zhenghao F,
Zuliang L.
Catal. Commun. 2009; 10: 1267
7m
Liang X,
Qi C.
Catal. Commun. 2011; 12: 808
7n
Dong F,
Luo J,
Zhou X.-L,
Liu Z.-L.
Catal. Lett. 2007; 116: 76
7o
Han F,
Yang L,
Li Z,
Xia C.
Org. Biomol. Chem. 2012; 10: 346
7p
Qiao K,
Hagiwara H,
Yokoyama C.
J. Mol. Catal. A: Chem. 2006; 246: 65
8
Ponpao N,
Senapak W,
Saeeng R,
Jaratjaroonphong J,
Sirion U.
RSC Adv. 2021; 11: 22692
9a
Senapak W,
Saeeng R,
Jaratjaroonphong J,
Kasemsuk T,
Sirion U.
Org. Biomol. Chem. 2016; 14: 1302
9b
Cole AC,
Jensen JL,
Ntai I,
Tran KL. T,
Weaver KJ,
Forbes DC,
Davis JH.
J. Am. Chem. Soc. 2002; 124: 5962
10
{4-[1H -Indol-3-yl(4-nitrophenyl)methyl]phenyl}dimethylamine (4a) , 3,3′-[(4-nitrophenyl)methylene]bis-1H -indole (5a), and 4,4′-[(4-Nitrophenyl)methylene]bis(N ,N -dimethylaniline) (6a): Typical Procedure
A mixture of [bsmim][NTf2 ] (10 mol%), 4-nitrobenzaldehyde (1a ; 1.0 mmol), N ,N -dimethylaniline (2a ; 2.0 mmol), and indole (3a ; 1.0 mmol) was stirred at 80 °C for 6.0 h.When the reaction was complete, the mixture was cooled to r.t. and the reaction was quenched with sat. aq NaHCO3 . The mixture was extracted with EtOAc (3×10 mL) and the combined organic layer was dried (Na2 SO4 ) and concentrated in a rotary evaporator. The crude product was purified by column chromatography (silica gel, 20% EtOAc–hexane) to give 4a , 5a , and 6a .
4a
Yellow oil; yield: 299 mg (81%); Rf
= 0.25 (20% EtOAc–hexane). 1 H NMR (400 MHz, CDCl3 ): δ = 8.13 (d, J = 8.8 Hz, 2 H), 8.07 (br s, 1 H), 7.40 (d, J = 8.8 Hz, 2 H), 7.37 (d, J = 8.0 Hz, 1 H), 7.23–7.17 (m, 2 H), 7.08 (d, J = 8.8 Hz, 2 H), 7.02 (td, J = 7.2, 0.8 Hz, 1 H), 6.71 (d, J = 8.8 Hz, 2 H), 6.59 (d, J = 1.6 Hz, 1 H), 5.68 (s, 1 H), 2.95 (s, 6 H). 13 C NMR (100 MHz, CDCl3 ): δ = 152.56, 149.36, 146.29, 136.71, 130.23, 129.64, 129.45, 126.61, 124.01, 123.47, 122.26, 119.59, 119.53, 118.98, 112.60, 111.18, 47.76, 40.55.
5a
Yellow solid; yield: 30 mg (8%); mp 230–232 °C; Rf
= 0.11 (20% EtOAc–hexane). 1 H NMR (400 MHz, CDCl3 ): δ = 8.14 (d, J = 8.8 Hz, 2 H), 8.03 (br s, 2 H), 7.51 (d, J = 8.8 Hz, 2 H), 7.39 (d, J = 8.0 Hz, 2 H), 7.34 (d, J = 8.0 Hz, 2 H), 7.20 (td, J = 7.4, 1.2 Hz, 2 H), 7.03 (td, J = 7.6, 1.2 Hz, 2 H), 6.69 (dd, J = 2.4, 1.6 Hz, 2 H), 5.99 (s, 1 H). 13 C NMR (100 MHz, CDCl3 ): δ = 152.06, 146.39, 136.71, 129.46, 126.58, 123.74, 123.47, 122.01, 119.38, 119.28, 117.78, 111.27, 40.16.
6a
Yellow solid; yield: 38 mg (10%); mp 172–174 °C; Rf
= 0.47 (20% EtOAc–hexane). 1 H NMR (400 MHz, CDCl3 ): δ = 8.11 (d, J = 8.8 Hz, 2 H), 7.29 (d, J = 8.4 Hz, 2 H), 6.95 (d, J = 8.4 Hz, 4 H), 6.67 (d, J = 8.8 Hz, 4 H), 5.45 (s, 1 H), 2.93 (s, 12 H). 13 C NMR (100 MHz, CDCl3 ): δ = 153.46, 149.23, 146.15, 130.91, 130.05, 129.81, 123.33, 112.52, 54.89, 40.55.
11
Guzmán-Lucero D,
Guzmán J,
Likhatchev D,
Martínez-Palou R.
Tetrahedron Lett. 2005; 46: 1119