Subscribe to RSS
DOI: 10.1055/a-1814-3162
Intraoperative Bildgebung, Navigation und Robotik an der Wirbelsäule
Die Zahl der Wirbelsäulenoperationen nimmt – nicht zuletzt aufgrund der demografischen Entwicklung und hier insbesondere der steigenden Zahl osteoporotischer Frakturen – stetig zu. Im Beitrag werden Vor- und Nachteile der innovativen Technologien im Vergleich zur konventionellen Wirbelsäulenchirurgie dargestellt. Hierbei stehen die Aspekte der intraoperativen Bildgebung und Navigation sowie deren Anforderung an den OP im Vordergrund.
-
Die dorsale Instrumentierung der Wirbelsäule ist bei isolierter Anwendung der 2-D-Bildgebung (Fluoroskopie) anspruchsvoll und geht mit Limitationen in Bezug auf Beurteilung von Reposition und Implantatlage einher.
-
Die Verwendung der intraoperativen 3-D-Bildgebung bei der operativen Versorgung von Wirbelsäulenerkrankungen führt nachgewiesenermaßen zu einer Reduktion der postoperativen Revisionsrate.
-
Durch die 3-D-bildgestützte Navigation in der Wirbelsäulenchirurgie werden die Präzision bei der Implantatplatzierung erhöht und minimalinvasive OP-Techniken ermöglicht.
-
Die intraoperative 3-D-Bildgebung, insbesondere die intraoperative CT, bringt neben den hohen Anschaffungskosten auch besondere Anforderungen an die Baustruktur des OP-Saals und an das gesamte OP-Personal mit sich.
-
Die Robotik in der Wirbelsäulenchirurgie findet in vereinzelten Regionen der Welt Akzeptanz. Ein realer Vorteil der Technik muss noch nachgewiesen werden, um die Kosten der Anschaffung rechtfertigen zu können.
Schlüsselwörter
Wirbelsäulenchirurgie - intraoperative 2-D-Bildgebung - intraoperative 3-D-Bildgebung - 3-D-Navigation - roboterassistierte ChirurgiePublication History
Article published online:
09 February 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Gautschi OP, Schatlo B, Schaller K. et al. Clinically relevant complications related to pedicle screw placement in thoracolumbar surgery and their management: a literature review of 35,630 pedicle screws. Neurosurg Focus 2011; 31: E8
- 2 OʼBrien JR, Krushinski E, Zarro CM. et al. Esophageal injury from thoracic pedicle screw placement in a polytrauma patient: a case report and literature review. J Orthop Trauma 2006; 20: 431-434
- 3 Di Silvestre M, Parisini P, Lolli F. et al. Complications of thoracic pedicle screws in scoliosis treatment. Spine 2007; 32: 1655-1661
- 4 Weinstein JN, Spratt KF, Spengler D. et al. Spinal pedicle fixation: reliability and validity of roentgenogram-based assessment and surgical factors on successful screw placement. Spine 1988; 13: 1012-1018
- 5 Castro WH, Halm H, Jerosch J. et al. Accuracy of pedicle screw placement in lumbar vertebrae. Spine 1996; 21: 1320-1324
- 6 Zimmermann F, Kohl K, Privalov M. et al. Intraoperative 3D imaging with cone-beam computed tomography leads to revision of pedicle screws in dorsal instrumentation: a retrospective analysis. J Orthop Surg Res 2021; 16: 706
- 7 Perna F, Borghi R, Pilla F. et al. Pedicle screw insertion techniques: an update and review of the literature. Musculoskelet Surg 2016; 100: 165-169
- 8 Scholz M, Kandziora F, Hildebrand F. et al. Verletzungen der oberen Halswirbelsäule: Update zu Diagnostik und Management. Unfallchirurg 2017; 120: 683-700
- 9 Fichtner J, Hofmann N, Rienmuller A. et al. Revision rate of misplaced pedicle screws of the thoracolumbar spine-comparison of three-dimensional fluoroscopy navigation with freehand placement: a systematic analysis and review of the literature. World Neurosurg 2018; 109: e24-e32
- 10 Gelalis ID, Paschos NK, Pakos EE. et al. Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques. Eur Spine J 2012; 21: 247-255
- 11 Laine T, Lund T, Ylikoski M. et al. Accuracy of pedicle screw insertion with and without computer assistance: a randomised controlled clinical study in 100 consecutive patients. Eur Spine J 2000; 9: 235-240
- 12 DʼSouza M, Gendreau J, Feng A. et al. Robotic-assisted spine surgery: history, efficacy, cost, and future trends. Robot Surg 2019; 6: 9-23
- 13 Siccoli A, Klukowska AM, Schröder ML. et al. A systematic review and meta-analysis of perioperative parameters in robot-guided, navigated, and freehand thoracolumbar pedicle screw instrumentation. World Neurosurg 2019; 127: 576-587.e575
- 14 Beerekamp MS, Sulkers GS, Ubbink DT. et al. Accuracy and consequences of 3D-fluoroscopy in upper and lower extremity fracture treatment: a systematic review. Eur J Radiol 2012; 81: 4019-4028
- 15 Franke J, von Recum J, Wendl K. et al. Intraoperative dreidimensionale Bildgebung – nützlich oder notwendig?. Unfallchirurg 2013; 116: 185-190
- 16 Beisemann N, Keil H, Swartman B. et al. Intraoperative 3D imaging leads to substantial revision rate in management of tibial plateau fractures in 559 cases. J Orthop Surg Res 2019; 14: 236
- 17 Tonetti J, Boudissa M, Kerschbaumer G. et al. Role of 3D intraoperative imaging in orthopedic and trauma surgery. Orthop Traumatol Surg Res 2020; 106: S19-S25
- 18 Burstrom G, Cewe P, Charalampidis A. et al. Intraoperative cone beam computed tomography is as reliable as conventional computed tomography for identification of pedicle screw breach in thoracolumbar spine surgery. Eur Radiol 2021; 31: 2349-2356
- 19 Mahmoud A, Shanmuganathan K, Rocos B. et al. Cervical spine pedicle screw accuracy in fluoroscopic, navigated and template guided systems-a systematic review. Tomography 2021; 7: 614-622
- 20 Khanna AR, Yanamadala V, Coumans JV. Effect of intraoperative navigation on operative time in 1-level lumbar fusion surgery. J Clin Neurosci 2016; 32: 72-76
- 21 Guha D, Jakubovic R, Gupta S. et al. Intraoperative error propagation in 3-dimensional spinal navigation from nonsegmental registration: a prospective cadaveric and clinical study. Global Spine J 2019; 9: 512-520
- 22 Rawicki N, Dowdell JE, Sandhu HS. Current state of navigation in spine surgery. Ann Transl Med 2021; 9: 85
- 23 Perdomo-Pantoja A, Ishida W, Zygourakis C. et al. Accuracy of current techniques for placement of pedicle screws in the spine: a comprehensive systematic review and meta-analysis of 51,161 screws. World Neurosurgery 2019; 126: 664-678.e663
- 24 Bratschitsch G, Leitner L, Stücklschweiger G. et al. Radiation exposure of patient and operating room personnel by fluoroscopy and navigation during spinal surgery. Sci Rep 2019; 9: 17652
- 25 Tarawneh AM, Salem KM. A systematic review and meta-analysis of randomized controlled trials comparing the accuracy and clinical outcome of pedicle screw placement using robot-assisted technology and conventional freehand technique. Global Spine J 2021; 11: 575-586
- 26 Li HM, Zhang RJ, Shen CL. Accuracy of pedicle screw placement and clinical outcomes of robot-assisted technique versus conventional freehand technique in spine surgery from nine randomized controlled trials: a meta-analysis. Spine 2020; 45: e111-e119
- 27 Huntsman KT, Ahrendtsen LA, Riggleman JR. et al. Robotic-assisted navigated minimally invasive pedicle screw placement in the first 100 cases at a single institution. J Robot Surg 2020; 14: 199-203
- 28 Huntsman KT, Riggleman JR, Ahrendtsen LA. et al. Navigated robot-guided pedicle screws placed successfully in single-position lateral lumbar interbody fusion. J Robot Surg 2020; 14: 643-647
- 29 Lefranc M, Peltier J. Evaluation of the ROSA™ Spine robot for minimally invasive surgical procedures. Expert Rev Med Devices 2016; 13: 899-906
- 30 Lefranc M, Peltier J. Accuracy of thoracolumbar transpedicular and vertebral body percutaneous screw placement: coupling the Rosa® Spine robot with intraoperative flat-panel CT guidance-a cadaver study. J Robot Surg 2015; 9: 331-338
- 31 Ghaednia H, Fourman MS, Lans A. et al. Augmented and virtual reality in spine surgery, current applications and future potentials. Spine J 2021; 21: 1617-1625