Synlett 2022; 33(10): 998-1002
DOI: 10.1055/a-1815-3539
letter

Copper-Catalyzed Alkylation of Quinoxalin-2(1H)-ones with Styrenes and tert-Butyl Peroxybenzoate

Xiaoyang Zhong
,
Xinying Li
,
Hua Yao
,
Zhaohua Yan
,
Hui Guo
,
Li Min
,
Sen Lin
We thank the National Natural Science Foundation of China (No. 21362022) and The Natural Science Foundation of Jiangxi Province (No. 20192BAB203006) for financial support.


Abstract

A simple strategy for the synthesis of 3-substituted quinoxalin-2(1H)-ones containing ether units is proposed. The method is realized by the three-component synthesis of quinoxalin-2(1H)-ones, styrenes, and tert-butyl peroxybenzoate (TBPB). This reaction has good functional group tolerance and may involve a free-radical process.

Supporting Information



Publication History

Received: 31 January 2022

Accepted after revision: 01 April 2022

Accepted Manuscript online:
01 April 2022

Article published online:
05 May 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Note

    • 1a Ries UJ, Priepke HW. M, Hauel NH, Handschuh S, Mihm G, Stassen JM, Wienen H, Nar W. Bioorg. Med. Chem. Lett. 2003; 13: 2297
    • 1b Carta A, Piras S, Loriga G, Paglietti G. Mini-Rev. Med. Chem. 2006; 6: 1179
    • 1c Liu R, Huang Z.-H, Murray MG, Guo X.-Y, Liu G. J. Med. Chem. 2011; 54: 5747
    • 1d Hussain S, Parveen S, Hao X, Zhang S.-Z, Wang W, Qin X.-Y, Yang Y.-C, Chen X, Zhu S.-J, Zhu C.-J, Ma B. Eur. J. Med. Chem. 2014; 80: 383
    • 1e Shi L, Hu W, Wu J, Zhou H, Zhou H, Li X. Mini-Rev. Med. Chem. 2018; 18: 392
    • 2a Udilova N, Kozlov AV, Bieberschulte W, Frei K, Ehrenberger K, Nohl H. Biochem. Pharmacol. 2003; 65: 59
    • 2b Nohl H, Bieberschulte W, Dietrich B, Udilova N, Kozlov AV. BioFactors 2003; 19: 79
    • 2c Piras S, Loriga M, Carta A, Paglietti G, PaolaCosti M, Ferrari S. J. Heterocycl. Chem. 2006; 43: 541
    • 2d Mamedov VA, Kalinin AA, Gubaidullin AT, Litvinov IA, Levin YA. Chem. Heterocycl. Compd. 2002; 38: 1504
    • 2e Nikam SS, Sahasrabudhe AD, Shastri RK, Ramanathan S. Synthesis 1983; 145
    • 3a Carrër A, Brion JD, Messaoudi S, Alami M. Org. Lett. 2013; 15: 5606
    • 3b Carrër A, Brion JD, Alami M, Messaoudi S. Adv. Synth. Catal. 2014; 356: 3821
    • 3c Zhang X, Xu B, Xu M.-H. Org. Chem. Front. 2016; 3: 944
    • 3d Yuan J.-W, Liu S.-N, Qu L.-B. Adv. Synth. Catal. 2017; 359: 4197
    • 3e Yin K, Zhang R. Org. Lett. 2017; 19: 1530
    • 3f Paul S, Ha JH, Park GE, Lee YR. Adv. Synth. Catal. 2017; 359: 1515
    • 3g Kwon SJ, Jung HI, Kim DY. ChemistrySelect 2018; 3: 5824
    • 3h Paul S, Khanal HD, Clinton CD, Kim SH, Lee YR. Org. Chem. Front. 2018; 6: 231
    • 3i Yin K, Zhang R. Synlett 2018; 29: 597
    • 3j Ramesh B, Reddy CR, Kumar GR, Reddy BV. S. Tetrahedron Lett. 2018; 59: 628
    • 3k Zeng X, Liu C, Wang X, Zhang J, Wang X, Hu Y. Org. Biomol. Chem. 2017; 15: 8929
    • 3l Yuan J.-W, Fu J.-H, Liu S.-N, Xiao Y.-M, Maoa P, Qu L.-B. Org. Biomol. Chem. 2018; 16: 3203
    • 3m Gupta A, Deshmukh MS, Jain N. J. Org. Chem. 2017; 82: 4784
    • 3n Wei W, Wang L, Bao P, Shao Y, Yue H, Yang D, Yang X, Zhao X, Wang H. Org. Lett. 2018; 20: 7125
    • 3o Li Y, Gao M, Wang L, Cui X. Org. Biomol. Chem. 2016; 14: 8428
    • 3p Li K.-J, Xu K, Liu Y.-G, Zeng C.-C, Sun B.-G. Adv. Synth. Catal. 2019; 361: 1033
    • 3q Yang Q, Yang Z, Tan Y, Zhao J, Sun Q, Zhang H.-Y, Zhang Y. Adv. Synth. Catal. 2019; 361: 1662
    • 3r Liu S, Huang Y, Qing F.-L, Xu X.-H. Org. Lett. 2018; 20: 5497
    • 3s Fu J, Yuan J, Zhang Y, Xiao Y, Mao P, Diao X, Qu L. Org. Chem. Front. 2018; 5: 3382
    • 3t Gu Y.-R, Duan X.-H, Chen L, Ma Z.-Y, Gao P, Guo L.-N. Org. Lett. 2019; 21: 917
    • 3u Xue W, Su Y, Wang K.-H, Zhang R, Feng Y, Cao L, Huang D, Hu Y. Org. Biomol. Chem. 2019; 17: 6654
    • 3v Xie L.-Y, Jiang L.-L, Tan J.-X, Wang Y, Xu X.-Q, Zhang B, Cao Z, He W.-M. ACS Sustainable Chem. Eng. 2019; 7: 14153
    • 3w Gao M, Li Y, Xie L, Chauvin R, Cui X. Chem. Commun. 2016; 52: 2846
    • 3x Kim Y, Kim DY. Tetrahedron Lett. 2018; 59: 2443
  • 4 Dutta HS, Ahmad A, Khan AA, Kumar M, Koley D. Adv. Synth. Catal. 2019; 361: 5534
  • 5 Meng N, Wang L.-L, Liu Q.-S, Li Q.-Y, Lv YF, Yue H.-L, Wang X.-J, Wei W. J. Org. Chem. 2020; 85: 6888
    • 7a Wang Z. Williamson Ether Synthesis. In Comprehensive Organic Name Reactions and Reagents. John Wiley &Sons; Hoboken: 2010
    • 7b Ullmann F, Sponagel P. Ber. Dtsch. Chem. Ges. 1905; 38: 2211
    • 7c Goldberg I. Ber. Dtsch. Chem. Ges. 1906; 39: 1691
    • 7d Ma D, Cai Q. Org. Lett. 2003; 5: 3799
    • 7e Monnier F, Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 6954
    • 7f Caron S, Ghosh A. Nucleophilic Aromatic Substitution. In Practical Synthetic Organic Chemistry. John Wiley &Sons; Hoboken: 2011: 237
    • 8a Li J, Luo Y, Cheo HW, Lan Y, Wu J. Chem 2019; 5: 192
    • 8b Badir SO, Molander GA. Chem 2020; 6: 1327
    • 8c Zhu C, Yue H, Chu L, Rueping M. Chem. Sci. 2020; 11: 4051
    • 8d Dhungana RK, Kc S, Basnetand P, Giri R. Chem. Rec. 2018; 18: 1314
    • 8e Giri R, KC S. J. Org. Chem. 2018; 83: 3013
    • 8f Lin J, Song R.-J, Hu M, Li J.-H. Chem. Rec. 2019; 19: 440
    • 9a Lux M, Klussmann M. Org. Lett. 2020; 22: 3697
    • 9b Guo L.-N, Wang S, Duan X.-H, Zhou S.-L. Chem. Commun. 2015; 51: 4803
    • 9c Fu J.-H, Yuan J.-W, Zhang Y, Xiao Y.-M, Mao P, Diao X.-Q, Qu L. Org. Chem. Front. 2018; 5: 3382
    • 9d Hu L.-Q, Yuan J.-W, Fu J.-H, Zhang T.-T, Gao L.-L, Xiao Y.-M, Mao P, Qu L.-B. Eur. J. Org. Chem. 2018; 4113