Synlett, Table of Contents Synlett 2022; 33(10): 998-1002DOI: 10.1055/a-1815-3539 letter Copper-Catalyzed Alkylation of Quinoxalin-2(1H)-ones with Styrenes and tert-Butyl Peroxybenzoate Xiaoyang Zhong‡ , Xinying Li‡ , Hua Yao∗ , Zhaohua Yan , Hui Guo , Li Min , Sen Lin∗ Recommend Article Abstract Buy Article All articles of this category Abstract A simple strategy for the synthesis of 3-substituted quinoxalin-2(1H)-ones containing ether units is proposed. The method is realized by the three-component synthesis of quinoxalin-2(1H)-ones, styrenes, and tert-butyl peroxybenzoate (TBPB). This reaction has good functional group tolerance and may involve a free-radical process. Key words Key wordsquinoxalin-2(1H)-ones - three-component synthesis - styrenes - free radicals Full Text References References and Note 1a Ries UJ, Priepke HW. M, Hauel NH, Handschuh S, Mihm G, Stassen JM, Wienen H, Nar W. Bioorg. Med. Chem. Lett. 2003; 13: 2297 1b Carta A, Piras S, Loriga G, Paglietti G. Mini-Rev. Med. Chem. 2006; 6: 1179 1c Liu R, Huang Z.-H, Murray MG, Guo X.-Y, Liu G. J. Med. Chem. 2011; 54: 5747 1d Hussain S, Parveen S, Hao X, Zhang S.-Z, Wang W, Qin X.-Y, Yang Y.-C, Chen X, Zhu S.-J, Zhu C.-J, Ma B. Eur. J. Med. Chem. 2014; 80: 383 1e Shi L, Hu W, Wu J, Zhou H, Zhou H, Li X. Mini-Rev. Med. Chem. 2018; 18: 392 2a Udilova N, Kozlov AV, Bieberschulte W, Frei K, Ehrenberger K, Nohl H. Biochem. Pharmacol. 2003; 65: 59 2b Nohl H, Bieberschulte W, Dietrich B, Udilova N, Kozlov AV. BioFactors 2003; 19: 79 2c Piras S, Loriga M, Carta A, Paglietti G, PaolaCosti M, Ferrari S. J. Heterocycl. Chem. 2006; 43: 541 2d Mamedov VA, Kalinin AA, Gubaidullin AT, Litvinov IA, Levin YA. Chem. Heterocycl. Compd. 2002; 38: 1504 2e Nikam SS, Sahasrabudhe AD, Shastri RK, Ramanathan S. Synthesis 1983; 145 3a Carrër A, Brion JD, Messaoudi S, Alami M. Org. Lett. 2013; 15: 5606 3b Carrër A, Brion JD, Alami M, Messaoudi S. Adv. Synth. Catal. 2014; 356: 3821 3c Zhang X, Xu B, Xu M.-H. Org. Chem. Front. 2016; 3: 944 3d Yuan J.-W, Liu S.-N, Qu L.-B. Adv. Synth. Catal. 2017; 359: 4197 3e Yin K, Zhang R. Org. Lett. 2017; 19: 1530 3f Paul S, Ha JH, Park GE, Lee YR. Adv. Synth. Catal. 2017; 359: 1515 3g Kwon SJ, Jung HI, Kim DY. ChemistrySelect 2018; 3: 5824 3h Paul S, Khanal HD, Clinton CD, Kim SH, Lee YR. Org. Chem. Front. 2018; 6: 231 3i Yin K, Zhang R. Synlett 2018; 29: 597 3j Ramesh B, Reddy CR, Kumar GR, Reddy BV. S. Tetrahedron Lett. 2018; 59: 628 3k Zeng X, Liu C, Wang X, Zhang J, Wang X, Hu Y. Org. Biomol. Chem. 2017; 15: 8929 3l Yuan J.-W, Fu J.-H, Liu S.-N, Xiao Y.-M, Maoa P, Qu L.-B. Org. Biomol. Chem. 2018; 16: 3203 3m Gupta A, Deshmukh MS, Jain N. J. Org. Chem. 2017; 82: 4784 3n Wei W, Wang L, Bao P, Shao Y, Yue H, Yang D, Yang X, Zhao X, Wang H. Org. Lett. 2018; 20: 7125 3o Li Y, Gao M, Wang L, Cui X. Org. Biomol. Chem. 2016; 14: 8428 3p Li K.-J, Xu K, Liu Y.-G, Zeng C.-C, Sun B.-G. Adv. Synth. Catal. 2019; 361: 1033 3q Yang Q, Yang Z, Tan Y, Zhao J, Sun Q, Zhang H.-Y, Zhang Y. Adv. Synth. Catal. 2019; 361: 1662 3r Liu S, Huang Y, Qing F.-L, Xu X.-H. Org. Lett. 2018; 20: 5497 3s Fu J, Yuan J, Zhang Y, Xiao Y, Mao P, Diao X, Qu L. Org. Chem. Front. 2018; 5: 3382 3t Gu Y.-R, Duan X.-H, Chen L, Ma Z.-Y, Gao P, Guo L.-N. Org. Lett. 2019; 21: 917 3u Xue W, Su Y, Wang K.-H, Zhang R, Feng Y, Cao L, Huang D, Hu Y. Org. Biomol. Chem. 2019; 17: 6654 3v Xie L.-Y, Jiang L.-L, Tan J.-X, Wang Y, Xu X.-Q, Zhang B, Cao Z, He W.-M. ACS Sustainable Chem. Eng. 2019; 7: 14153 3w Gao M, Li Y, Xie L, Chauvin R, Cui X. Chem. Commun. 2016; 52: 2846 3x Kim Y, Kim DY. Tetrahedron Lett. 2018; 59: 2443 4 Dutta HS, Ahmad A, Khan AA, Kumar M, Koley D. Adv. Synth. Catal. 2019; 361: 5534 5 Meng N, Wang L.-L, Liu Q.-S, Li Q.-Y, Lv YF, Yue H.-L, Wang X.-J, Wei W. J. Org. Chem. 2020; 85: 6888 6a Nakata T. Chem. Rev. 2005; 105: 4314 6b Kang EJ, Lee E. Chem. Rev. 2005; 105: 4348 6c Taylor RD, MacCoss M, Lawson AD. G. J. Med. Chem. 2014; 57: 5845 6d Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451 6e Czarnik AW. Acc. Chem. Res. 1996; 29: 112 7a Wang Z. Williamson Ether Synthesis. In Comprehensive Organic Name Reactions and Reagents. John Wiley &Sons; Hoboken: 2010 7b Ullmann F, Sponagel P. Ber. Dtsch. Chem. Ges. 1905; 38: 2211 7c Goldberg I. Ber. Dtsch. Chem. Ges. 1906; 39: 1691 7d Ma D, Cai Q. Org. Lett. 2003; 5: 3799 7e Monnier F, Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 6954 7f Caron S, Ghosh A. Nucleophilic Aromatic Substitution. In Practical Synthetic Organic Chemistry. John Wiley &Sons; Hoboken: 2011: 237 8a Li J, Luo Y, Cheo HW, Lan Y, Wu J. Chem 2019; 5: 192 8b Badir SO, Molander GA. Chem 2020; 6: 1327 8c Zhu C, Yue H, Chu L, Rueping M. Chem. Sci. 2020; 11: 4051 8d Dhungana RK, Kc S, Basnetand P, Giri R. Chem. Rec. 2018; 18: 1314 8e Giri R, KC S. J. Org. Chem. 2018; 83: 3013 8f Lin J, Song R.-J, Hu M, Li J.-H. Chem. Rec. 2019; 19: 440 9a Lux M, Klussmann M. Org. Lett. 2020; 22: 3697 9b Guo L.-N, Wang S, Duan X.-H, Zhou S.-L. Chem. Commun. 2015; 51: 4803 9c Fu J.-H, Yuan J.-W, Zhang Y, Xiao Y.-M, Mao P, Diao X.-Q, Qu L. Org. Chem. Front. 2018; 5: 3382 9d Hu L.-Q, Yuan J.-W, Fu J.-H, Zhang T.-T, Gao L.-L, Xiao Y.-M, Mao P, Qu L.-B. Eur. J. Org. Chem. 2018; 4113 Supplementary Material Supplementary Material Supporting Information