Pneumologie 2024; 78(05): 330-345
DOI: 10.1055/a-1854-2693
Fort- und Weiterbildung

Intensivmedizinische Therapie von COVID-19

COVID-19 in the intensive care unit
André P. Becker
,
Sebastian Mang
,
Torben Rixecker
,
Philipp M. Lepper

Die pathophysiologischen Abläufe des klassischen akuten Lungenversagens (ARDS) und des ARDS aufgrund einer SARS-CoV-2-Infektion (C-ARDS) sind grundsätzlich ähnlich. Beide führen in ihrer Endstrecke der Inflammation zu einer Störung der Blut-Luft-Schranke. Die Behandlungsstrategien für C-ARDS konzentrieren sich, wie beim klassischen ARDS, auf die Unterstützung oder den Ersatz von Organfunktionen und die Vermeidung von Folgeschäden. Der vorliegende Artikel fasst die Behandlungsstrategien auf der Intensivstation zusammen.

Abstract

The acute respiratory failure as well as ARDS (acute respiratory distress syndrome) have challenged clinicians since the initial description over 50 years ago. Various causes can lead to ARDS and therapeutic approaches for ARDS/ARF are limited to the support or replacement of organ functions and the prevention of therapy-induced consequences. In recent years, triggered by the SARS-CoV-2 pathogen, numerous cases of acute lung failure (C-ARDS) have emerged. The pathophysiological processes of classical ARDS and C-ARDS are essentially similar. In their final stages of inflammation, both lead to a disruption of the blood-air barrier. Treatment strategies for C-ARDS, like classical ARDS, focus on supporting or replacing organ functions and preventing consequential damage. This article summarizes the treatment strategies in the intensive care unit.

Kernaussagen
  • Das klassische ARDS unter scheidet sich kaum in den grundlegenden pathophysiologischen Abläufen von dem ARDS, welches durch SARS-CoV-2 ausgelöst wird.

  • Die Hyperinflammation ist ein wesentlicher Faktor in der Entstehung des ARDS.

  • Die Therapie des ARDS besteht in einer Unterstützung der Organfunktion unter möglicher Vermeidung von Folgeschäden durch die Therapie.

  • Eine antiinflammatorische Therapie mit Kortison sollte bei Sauerstoffpflichtigkeit durchgeführt werden.

  • Bakterielle Ko-Infektionen sollten regelmäßig evaluiert und bei Relevanz adressiert werden, entsprechend den Leitlinien (ambulante und nosokomiale Pneumonie).

  • Eine High-Flow-Sauerstofftherapie oder eine NIV können gegebenenfalls eine invasive Beatmung vermeiden.

  • Bei Einleitung einer HFNC/NIV sollte ein Eskalationsschema festgelegt werden.

  • Unter invasiver Beatmung ist das Ziel beim ARDS eine lungenprotektive Beatmung, mögliche additive Therapiestrategie ist die Bauchlage.

  • Eine mögliche ECMO sollte bei Patienten mit ARDS frühzeitig diskutiert werden, um die Patientenselektion zu verbessern.

  • Eine prophylaktische Antikoagulation sollte bei stationär behandelten Patienten mit COVID-19 durchgeführt werden, sofern keine Indikation für eine Vollantikoagulation besteht.



Publication History

Article published online:
17 May 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Ashbaugh DG, Boyd BD, Petty TL. et al. Acute respiratory distress in adults. Lancet 1967; 290: 319-323
  • 2 Centers for Disease Control and Prevention (CDC). COVID Data Tracker. Accessed February 20, 2024 at: https://covid.cdc.gov/covid-data-tracker/#datatracker-home
  • 3 Kadkhoda K. Herd Immunity to COVID-19. Am J Clin Pathol 2021; 155: 471-472
  • 4 Bellani G, Laffey JG, Pham T. et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 2016; 315: 788-800
  • 5 Friedrichson B, Mutlak H, Zacharowski K. et al. Insight into ECMO, mortality and ARDS: a nationwide analysis of 45,647 ECMO runs. Crit Care 2021; 25: 38
  • 6 AWMF. S3-Leitlinie Invasive Beatmung und Einsatz extrakorporaler Verfahren bei akuter respiratorischer Insuffizienz. AWMF-Register-Nr. 001-021. Accessed February 20, 2024 at: https://register.awmf.org/de/leitlinien/detail/001-021
  • 7 Fan E, Del Sorbo L, Goligher EC. et al. An official American Thoracic Society/European Society of intensive care medicine/society of critical care medicine clinical practice guideline: Mechanical ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 2017; 195: 1253-1263
  • 8 Grasselli G, Calfee CS, Camporota L. et al. ESICM guidelines on acute respiratory distress syndrome: definition, phenotyping and respiratory support strategies. Intensive Care Med 2023; 49: 727-759
  • 9 Meyer NJ, Gattinoni L, Calfee CS. Acute respiratory distress syndrome. Lancet 2021; 398: 622-637
  • 10 Swenson KE, Swenson ER. Pathophysiology of Acute Respiratory Distress Syndrome and COVID-19 Lung Injury. Crit Care Clin 2021; 37: 749-776
  • 11 Xu ZS, Shu T, Kang L. et al. Temporal profiling of plasma cytokines, chemokines and growth factors from mild, severe and fatal COVID-19 patients. Signal Transduct Target Ther 2020; 5: 100
  • 12 Lamers MM, Haagmans BL. SARS-CoV-2 pathogenesis. Nat Rev Microbiol 2022; 20: 270-284
  • 13 Mackman N, Antoniak S, Wolberg AS. et al. Coagulation Abnormalities and Thrombosis in Patients Infected With SARS-CoV-2 and Other Pandemic Viruses. Arterioscler Thromb Vasc Biol 2020; 40: 2033-2044
  • 14 Bonaventura A, Vecchié A, Dagna L. et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev Immunol 2021; 21: 319-329
  • 15 Lannon M, Duda T, Greer A. et al. Intracranial hemorrhage in patients treated for SARS-CoV-2 with extracorporeal membrane oxygenation: A systematic review and meta-analysis. J Crit Care 2023; 77: 154319
  • 16 Yang X, Yu Y, Xu J. et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 2020; 8: 475-481
  • 17 Xie Y, Bowe B, Maddukuri G. et al. Comparative evaluation of clinical manifestations and risk of death in patients admitted to hospital with covid-19 and seasonal influenza: cohort study. BMJ 2020; 371: m4677
  • 18 Francone M, Iafrate F, Masci GM. et al. Chest CT score in COVID-19 patients: correlation with disease severity and short-term prognosis. Eur Radiol 2020; 30: 6808-6817
  • 19 Ranieri VM, Rubenfeld GD, Thompson BT. et al. Acute respiratory distress syndrome: The Berlin definition. JAMA 2012; 307: 2526-2533
  • 20 Matthay MA, Thompson BT, Ware LB. The Berlin definition of acute respiratory distress syndrome: should patients receiving high-flow nasal oxygen be included?. Lancet Respir Med 2021; 9: 933-936
  • 21 Palmer E, Post B, Klapaukh R. et al. The Association between Supraphysiologic Arterial Oxygen Levels and Mortality in Critically Ill Patients. A Multicenter Observational Cohort Study. Am J Respir Crit Care Med 2019; 200: 1373-1380
  • 22 Semler MW, Casey JD, Lloyd BD. et al. Oxygen-Saturation Targets for Critically Ill Adults Receiving Mechanical Ventilation. N Engl J Med 2022; 387: 1759-1769
  • 23 Schjørring OL, Klitgaard TL, Perner A. et al. Lower or Higher Oxygenation Targets for Acute Hypoxemic Respiratory Failure. N Engl J Med 2021; 384: 1301-1311
  • 24 Zhao X, Xiao H, Dai F. et al. Classification and effectiveness of different oxygenation goals in mechanically ventilated critically ill patients: network meta-analysis of randomised controlled trials. Eur Respir J 2021; 58: 2002928
  • 25 AWMF. S3-Leitlinie Empfehlungen zur Therapie von Patienten mit COVID-19. AWMF-Register-Nr. 113-001. Accessed February 20, 2024 at: https://register.awmf.org/assets/guidelines/113-001LGl_S3_Empfehlungen-zur-stationaeren-Therapie-von-Patienten-mit-COVID-19_2023-03.pdf
  • 26 Amato MB, Barbas CS, Medeiros DM. et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 1998; 338: 347-354
  • 27 Badulak J, Antonini MV, Stead CM. et al. Extracorporeal Membrane Oxygenation for COVID-19: Updated 2021 Guidelines from the Extracorporeal Life Support Organization. ASAIO Journal 2021; 67: 485-495
  • 28 AWMF. S2k-Leitlinie Nichtinvasive Beatmung als Therapie der akuten respiratorischen Insuffizien. AWMF-Register-Nr. 020-004. Accessed February 20, 2024 at: https://register.awmf.org/de/leitlinien/detail/020-004
  • 29 Karagiannidis C, Hentschker C, Westhoff M. et al. Observational study of changes in utilization and outcomes in mechanical ventilation in COVID-19. PLoS One 2022; 17: e0262315
  • 30 Camous L, Pommier JD, Martino F. et al. Very late intubation in COVID-19 patients: a forgotten prognosis factor?. Crit Care 2022; 26: 89
  • 31 Grieco DL, Menga LS, Cesarano M. et al. Effect of Helmet Noninvasive Ventilation vs High-Flow Nasal Oxygen on Days Free of Respiratory Support in Patients With COVID-19 and Moderate to Severe Hypoxemic Respiratory Failure. JAMA 2021; 325: 1731
  • 32 Rosén J, Oelreich E von, Fors D. et al. Awake prone positioning in patients with hypoxemic respiratory failure due to COVID-19: the PROFLO multicenter randomized clinical trial. Crit Care 2021; 25: 209
  • 33 Ehrmann S, Li J, Ibarra-Estrada M. et al. Awake prone positioning for COVID-19 acute hypoxaemic respiratory failure: a randomised, controlled, multinational, open-label meta-trial. Lancet Respir Med 2021; 9: 1387-1395
  • 34 Alhazzani W, Parhar KKS, Weatherald J. et al. Effect of Awake Prone Positioning on Endotracheal Intubation in Patients with COVID-19 and Acute Respiratory Failure: A Randomized Clinical Trial. JAMA 2022; 327: 2104-2113
  • 35 Gattinoni L, Carlesso E, Caironi P. Stress and strain within the lung. Curr Opin Crit Care 2012; 18: 42-47
  • 36 Slutsky AS, Ranieri VM. Ventilator-Induced Lung Injury. N Engl J Med 2013; 369: 2126-2136
  • 37 Jardin F, Vieillard-Baron A. Is there a safe plateau pressure in ARDS? The right heart only knows. Intensive Care Med 2007; 33: 444-447
  • 38 ARDS net. NIH NHLBI ARDS Clinical Network Mechanical Ventilation Protocol Summary. Accessed February 20, 2024 at: http://www.ardsnet.org/files/ventilator_protocol_2008-07.pdf
  • 39 National Institutes of Health (NIH). COVID-19 Treatment Guidelines. Accessed February 20, 2024 at: https://www.covid19treatmentguidelines.nih.gov
  • 40 Beitler JR, Sarge T, Banner-Goodspeed VM. et al. Effect of Titrating Positive End-Expiratory Pressure (PEEP) with an Esophageal Pressure-Guided Strategy vs an Empirical High PEEP-F io 2 Strategy on Death and Days Free from Mechanical Ventilation among Patients with Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. JAMA 2019; 321: 846-857
  • 41 Cavalcanti AB, Suzumura ÉA, Laranjeira LN. et al. Effect of lung recruitment and titrated Positive End-Expiratory Pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome – A randomized clinical trial. JAMA 2017; 318: 1335-1345
  • 42 Pintado MC, Pablo R de, Trascasa M. et al. Individualized PEEP setting in subjects with ARDS: A randomized controlled pilot study. Respir Care 2013; 58: 1416-1423
  • 43 Wendel Garcia PD, Caccioppola A, Coppola S. et al. Latent class analysis to predict intensive care outcomes in Acute Respiratory Distress Syndrome: a proposal of two pulmonary phenotypes. Crit Care 2021; 25: 154
  • 44 Khokher W, Malhas SE, Beran A. et al. Inhaled Pulmonary Vasodilators in COVID-19 Infection: A Systematic Review and Meta-Analysis. J Intensive Care Med 2022; 37: 1370-1382
  • 45 Sameed M, Meng Z, Marciniak ET. EOLIA trial: the future of extracorporeal membrane oxygenation in acute respiratory distress syndrome therapy?. Breathe 2019; 15: 244-246
  • 46 Combes A, Peek GJ, Hajage D. et al. ECMO for severe ARDS: systematic review and individual patient data meta-analysis. Intensive Care Med 2020; 46: 2048-2057
  • 47 Karagiannidis C, Bein T, Welte T. ECMO during the COVID-19 pandemic: moving from rescue therapy to more reasonable indications. Eu Respir J 2022; 59: 2103262
  • 48 Extracorporeal Life Support Organization (ELSO). General Guidelines for All ECLS Cases. 2017 Accessed February 20, 2024 at: https://www.elso.org/ecmo-resources/elso-ecmo-guidelines.aspx
  • 49 Anselmi A, Mansour A, Para M. et al. Veno-Arterial Extracorporeal Membrane Oxygenation for Circulatory Failure in COVID-19 Patients: Insights from the ECMOSARS Registry. Eur J Cardiothorac Surg 2023; 64: ezad229
  • 50 Kannapadi NV, Jami M, Premraj L. et al. Neurological Complications in COVID-19 Patients With ECMO Support: A Systematic Review and Meta-Analysis. Heart Lung Circ 2022; 31: 292-298
  • 51 Giani M, Martucci G, Madotto F. et al. Prone Positioning during Venovenous Extracorporeal Membrane Oxygenation in Acute Respiratory Distress Syndrome A Multicenter Cohort Study and Propensity-matched Analysis. Ann Am Thorac Soc 2021; 18: 495-501
  • 52 Massart N, Guervilly C, Mansour A. et al. Impact of Prone Position in COVID-19 Patients on Extracorporeal Membrane Oxygenation*. Crit Care Med 2023; 51: 36-46
  • 53 Dreier E, Malfertheiner MV, Dienemann T. et al. ECMO in COVID-19 – prolonged therapy needed? A retrospective analysis of outcome and prognostic factors. Perfusion (United Kingdom) 2021; 36: 582-591
  • 54 Schmidt M, Hajage D, Lebreton G. et al. Prone Positioning During Extracorporeal Membrane Oxygenation in Patients With Severe ARDS: The PRONECMO Randomized Clinical Trial. JAMA 2023; 330: 2343-2353
  • 55 Silversides JA, Major E, Ferguson AJ. et al. Conservative fluid management or deresuscitation for patients with sepsis or acute respiratory distress syndrome following the resuscitation phase of critical illness: a systematic review and meta-analysis. Intensive Care Med 2017; 43: 155-170
  • 56 Santoriello D, Khairallah P, Bomback AS. et al. Postmortem Kidney Pathology Findings in Patients with COVID-19. J Am Soc Nephrol 2020; 31: 2158-2167
  • 57 Kudose S, Batal I, Santoriello D. et al. Kidney Biopsy Findings in Patients with COVID-19. J Am Soc Nephrol 2020; 31: 1959-1968
  • 58 Moss M, Huang DT, Brower RG. National Heart, Lung, and Blood Institute PETAL Clinical Trials Network. et al. Early Neuromuscular Blockade in the Acute Respiratory Distress Syndrome. N Engl J Med 2019; 380: 1997-2008
  • 59 AWMF. S3-Leitlinie Analgesie, Sedierung und Delirmanagement in der Intensivmedizin (DAS-Leitlinie). AWMF-Register-Nr. 001-012. Accessed February 20, 2024 at: https://register.awmf.org/de/leitlinien/detail/001-012
  • 60 Langford BJ, So M, Raybardhan S. et al. Bacterial co-infection and secondary infection in patients with COVID-19: a living rapid review and meta-analysis. Clin Microbiol Infect 2020; 26: 1622-1629
  • 61 Garcia-Vidal C, Sanjuan G, Moreno-García E. et al. Incidence of co-infections and superinfections in hospitalized patients with COVID-19: a retrospective cohort study. Clin Microbiol Infect 2021; 27: 83-88
  • 62 Urban M, Meilinger M, Hermann M. et al. Nosokomiale Pneumonie und beatmungsassoziierte Krankenhauserreger. Anästhesie Nachr 2022; 4: 243-253
  • 63 Lippi G, Plebani M. Procalcitonin in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. Clin Chim Acta 2020; 505: 190-191
  • 64 Pink I, Raupach D, Fuge J. et al. C-reactive protein and procalcitonin for antimicrobial stewardship in COVID-19. Infection 2021; 49: 935-943
  • 65 Wagner C, Griesel M, Mikolajewska A. et al. Systemic corticosteroids for the treatment of COVID-19. Cochrane Database Syst Rev 2021; 8: CD014963
  • 66 Horby P, Shen Lim W, Emberson JR. RECOVERY Collaborative Group. et al. Dexamethasone in Hospitalized Patients with Covid-19. N Engl J Med 2021; 384: 693-704
  • 67 Villar J, Ferrando C, Martínez D. et al. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir Med 2020; 8: 267-276
  • 68 Ghosn L, Chaimani A, Evrenoglou T. et al. Interleukin-6 blocking agents for treating COVID-19: a living systematic review. Cochrane Database Syst Rev 2021; 3: CD013881
  • 69 Gordon AC, Mouncey PR, Al-Beidh F. REMAP-CAP Investigators. et al. Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19. N Engl J Med 2021; 384: 1491-1502
  • 70 Gottlieb RL, Vaca CE, Paredes R. et al. Early Remdesivir to Prevent Progression to Severe Covid-19 in Outpatients. N Engl J Med 2022; 386: 305-315
  • 71 Beigel JH, Tomashek KM, Dodd LE. et al. Remdesivir for the Treatment of Covid-19 – Final Report. N Engl J Med 2020; 383: 1813-1826
  • 72 Pan H, Peto R, Henao-Restrepo AM. WHO Solidarity Trial Consortium. et al. Repurposed Antiviral Drugs for Covid-19 – Interim WHO Solidarity Trial Results. N Engl J Med 2021; 384: 497-511
  • 73 ATTACC Investigators; ACTIV-4a Investigators; REMAP-CAP Investigators. et al. Therapeutic Anticoagulation with Heparin in Noncritically Ill Patients with Covid-19. N Engl J Med 2021; 385: 790-802
  • 74 Spyropoulos AC, Goldin M, Giannis D. et al. Efficacy and Safety of Therapeutic-Dose Heparin vs Standard Prophylactic or Intermediate-Dose Heparins for Thromboprophylaxis in High-risk Hospitalized Patients With COVID-19. JAMA Intern Med 2021; 181: 1612
  • 75 Florescu S, Stanciu D, Zaharia M. et al. Long-term (180-Day) Outcomes in Critically Ill Patients With COVID-19 in the REMAP-CAP Randomized Clinical Trial. JAMA 2023; 329: 39