Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2022; 33(15): 1511-1514
DOI: 10.1055/a-1873-3530
DOI: 10.1055/a-1873-3530
letter
P-Chiral Phosphine Sulfide Synthesis by Combination of Enzymatic Desymmetrization and Successive Deformylative P–C Cross-Couplings
This work was partially supported by the Japan Society for the Promotion of Science (JSPS KAKENHI, Grant Number JP15H00754 and JP18H02022), Grant-in-Aid for Scientific Research on Innovative Areas ‘New Polymeric Materials Based on Element-Blocks (No. 2401)’.
Abstract
A process for the synthesis of P-chiral triarylphosphine sulfides via sequential Pd-catalyzed stereospecific P–C coupling reactions of P-chiral precursors prepared by enzymatic desymmetrization was developed. Three independent aryl substituents could be introduced onto the P atom by the sequential P–C couplings under mild conditions while retaining the high enantiopurity.
Key words
P-chiral phosphine - phosphine sulfide - P–C coupling - palladium - enzymatic desymmetrizationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/ a-1873-3530.
- Supporting Information
Publication History
Received: 10 March 2022
Accepted after revision: 10 June 2022
Accepted Manuscript online:
10 June 2022
Article published online:
20 July 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Clarke ML, Williams MJ. In Organophosphorus Reagents . Murphy PJ. Oxford University Press; New York: 2004
- 1b Gilheany DG, Mitchell CM. In The Chemistry of Organophosphorus Compounds, Vol. 1. Hartley FR. John Wiley & Sons; Chichester: 1990
- 2a Ye F, Xu Z, Xu L.-W. Acc. Chem. Res. 2021; 54: 452
- 2b Börner A. Phosphorus Ligands in Asymmetric Catalysis: Synthesis and Applications, Vol. 1–3. Wiley-VCH; Weinheim: 2008
- 2c Guiry PJ, Saunders CP. Adv. Synth. Catal. 2004; 346: 497
- 2d Tang W, Zhang X. Chem. Rev. 2003; 103: 3029
- 3a Cabré A, Riera A, Verdaguer X. Acc. Chem. Res. 2020; 53: 676
- 3b Imamoto T, Tamura K, Zhang Z, Horiuchi Y, Sugiya M, Yoshida K, Yanagisawa A, Gridnev ID. J. Am. Chem. Soc. 2012; 134: 1754
- 3c Tamura K, Sugiya M, Yoshida K, Yanagisawa A, Imamoto T. Org. Lett. 2010; 12: 4400
- 3d Imamoto T, Sugita K, Yoshida K. J. Am. Chem. Soc. 2005; 127: 11934
- 3e Liu D, Zhang X. Eur. J. Org. Chem. 2005; 646
- 3f Hoge G, Wu H.-P, Kissel WS, Pflum DA, Greene DJ, Bao J. J. Am. Chem. Soc. 2004; 126: 5966
- 3g Imamoto T, Watanabe J, Wada Y, Masuda H, Yamada H, Tsuruta H, Matsukawa S, Yamaguchi K. J. Am. Chem. Soc. 1998; 120: 1635
- 3h Knowles WS, Sabacky MJ, Vineyard BD, Weinkauff DJ. J. Am. Chem. Soc. 1975; 97: 2567
- 4a Ye X, Peng L, Bao X, Tan C.-H, Wang H. Green Synth. Catal. 2021; 2: 6
- 4b Wauters I, Debrouwer W, Stevens CV. Beilstein J. Org. Chem. 2014; 10: 1064
- 4c Grabulosa A, Granell J, Muller G. Coord. Chem. Rev. 2007; 251: 25
- 5a Xu D, Rivas-Bascón N, Padial NM, Knouse KW, Zheng B, Vantourout JC, Schmidt MA, Eastgate MD, Baran PS. J. Am. Chem. Soc. 2020; 142: 5785
- 5b Han ZS, Goyal N, Herbage MA, Sieber JD, Qu B, Xu Y, Li Z, Reeves JT, Desrosiers J.-N, Ma S, Grinberg N, Lee H, Mangunuru HP. R, Zhang Y, Krishnamurthy D, Lu BZ, Song JJ, Wang G, Senanayake CH. J. Am. Chem. Soc. 2013; 135: 2474
- 5c Corey EJ, Chen Z, Tanoury GJ. J. Am. Chem. Soc. 1993; 115: 11000
- 5d Juge S, Stephan M, Laffitte JA, Genet JP. Tetrahedron Lett. 1990; 31: 6357
- 5e Juge S, Genet JP. Tetrahedron Lett. 1989; 30: 2783
- 6 Imamoto T. Proc. Jpn. Acad., Ser. B 2021; 97: 520
- 7a Liu X.-T, Zhang Y.-Q, Han X.-Y, Sun S.-P, Zhang Q.-W. J. Am. Chem. Soc. 2019; 141: 16584
- 7b Chan VS, Chiu M, Bergman RG, Toste FD. J. Am. Chem. Soc. 2009; 131: 6021
- 7c Blank NF, Moncarz JR, Brunker TJ, Scriban C, Anderson BJ, Amir O, Glueck DS, Zakharov LN, Golen JA, Incarvito CD, Rheingold AL. J. Am. Chem. Soc. 2007; 129: 6847
- 7d Brunker TJ, Anderson BJ, Blank NF, Glueck DS, Rheingold AL. Org. Lett. 2007; 9: 1109
- 7e Pican S, Gaumont A.-C. Chem. Commun. 2005; 2393
- 8 Anderson BJ, Guino-o MA, Glueck DS, Golen JA, DiPasquale AG, Liable-Sands LM, Rheingold AL. Org. Lett. 2008; 10: 4425
- 9a Ohta H, Xue Q, Hayashi M. Eur. J. Org. Chem. 2018; 735
- 9b Hayashi M, Matsuura T, Tanaka I, Ohta H, Watanabe Y. Org. Lett. 2013; 15: 628
- 10 Wiktelius D, Johansson MJ, Luthman K, Kann N. Org. Lett. 2005; 7: 4991
- 11 General Procedure and Characterization Data for the Enzymatic Desymmetrization of 3a (Table 1, entry 1) CALB (500 mg, 100 wt% for 3a) was added to the mixture of 3a (500 mg, 2.47 mmol) and vinyl acetate (18 mL). After stirring at 25 °C for 7 h, the reaction mixture was diluted with CHCl3, filtered, and evaporated to dryness. The residue was purified by column chromatography on silica gel (eluent: ethyl acetate/CHCl3 = 1/15) to give 4a as a colorless oil (555 mg, 2.27 mmol, 92%, >99% ee). The optical purity was determined by chiral HPLC (Daicel CHIRALPAK IA, 0.46 × 25 cm, rt, eluent: 2-propanol/n-hexane = 5/95, 0.5 mL/min, detection: UV 254 nm, t = 49.2 min). Compound 4a: 1H NMR (400 MHz, CDCl3): δ = 2.14 (s, 3 H, CH3), 3.17 (br, 1 H, OH), 4.07–4.37 (m, 2 H, CH2OH), 4.56–4.88 (m, 2 H, CH2OAc), 7.51–7.55 (m, 2 H, Ph), 7.59–7.62 (m, 1 H, Ph), 7.91–7.96 (m, 2 H, Ph). 13C{1H} NMR (100 MHz, CDCl3): δ = 20.7 (s, CH3), 61.56 (d, J = 58.4 Hz, CH2OAc), 61.63 (d, J = 61.4 Hz, CH2OH), 127.3 (d, J = 74.5 Hz, ipso-C of Ph), 129.0 (d, J = 12.1 Hz, meta-C of Ph), 131.6 (d, J = 10.1 Hz, ortho-C of Ph), 133.0 (d, J = 3.0 Hz, para-C of Ph), 170.5 (d, J = 5.0 Hz, C = O). 31P{1H} NMR (162 MHz, CDCl3): δ = 40.7. HRMS (FAB+, 3-NBA): m/z calcd for C10H14O3PS: 245.0401 [M + H]+; found: 245.0390.
- 12 The stability of 4h toward racemization was investigated (Scheme S2 in the Supporting Information). As a result, 4h was found to be stable toward racemization at 25 °C for 24 h in the absence of added acid or base, while the enantiopurity decreased under thermal and acidic/basic conditions.
- 13 Romeo R, Wozniak LA, Chatgilialoglu C. Tetrahedron Lett. 2000; 41: 9899
- 14 The reduction of 10 with (Me3Si)3SiH/AIBN gave the corresponding trivalent phosphine without loss of enantiopurity (Scheme S3 in the Supporting Information).
For reviews, see: