RSS-Feed abonnieren
DOI: 10.1055/a-1879-7221
Exogen bedingte Retinopathien
Exogenously induced retinopathiesZusammenfassung
Exogen bedingte Retinopathien werden am häufigsten durch externe Stimulanzien, seltener durch unerwünschte Arzneimittelwirkungen systemisch oder intravitreal eingesetzter Medikamente und noch seltener durch Impfungen oder die Einwirkung von Lichtstrahlung verursacht. Die Kenntnis exogener Ursachen und ihre mögliche Symptomatik ist zur Prophylaxe oder zur Früherkennung schädigender Wirkungen und zur adäquaten Beratung der Patienten wichtig.
Abstract
Exogenously induced retinopathies can be caused by consumation of stimulating substances, systemic or ocular medications, vaccinations, light or irradiation. Some of the effects are transient, whereas other effects induce irreversible toxic reactions. Retinal damage may develop either acutely with obvious relation to the damaging cause, but often may take a long duration of repeated use of a substance or medication. External stimulants (e.g. nicotine, alcohol, poppers, methanol) are the most frequent cause of exogenously induced retinal damage. Side effects from systemic drugs (e.g. hydroxychloroquine, ethambutol, MEK-, ERK-, FLT3-, checkpoint inhibitors, didanosin, pentosanpolysulfat sodium) or intravitreally applied drugs (e.g. antibiotics, VEGF-inhibitors) are less frequent. Ocular side effects associated with vaccinations are rare. Ambient light sources induce no damaging effects on the retina. Incorrect use of technical or medical light sources (e.g. laser pointers) without adherence to safety recommendations or unshielded observation of the sun might induce permanent retinal damage. Local or external irradiation might induce retinal vascular damage resulting in radiation retinopathy.
-
Exogen bedingte retinale Erkrankungen können durch exogen zugeführte Substanzen oder Strahlung im sichtbaren oder nicht sichtbaren Wellenlängenbereich induziert werden.
-
Exogen zugeführte Substanzen können vorübergehende reversible Veränderungen auslösen oder über toxische, autoimmune oder mechanische Wirkungen permanente Schäden verursachen.
-
Toxische Langzeitwirkungen werden am häufigsten durch externe Stimulanzien (Nikotin, Alkohol) verursacht.
-
Unerwünschte Arzneimittelwirkungen (UAW) von systemisch angewandten Medikamenten an der Netzhaut sind selten. Wegen der breiten Anwendung sind retinale Veränderungen bei der Langzeittherapie mit (Hydroxy-)Chloroquin im klinischen Alltag wahrscheinlich am häufigsten. Screening-Untersuchungen sind nur bei wenigen Medikamenten sinnvoll. Das Auftreten von UAW erfordert eine Therapieänderung in Abstimmung mit den behandelnden Ärzten.
-
Die intraokulare Anwendung von Medikamenten (Antibiotika, Anti-VEGF-Medikamente) kann ebenfalls zu ausgeprägten Funktionsstörungen führen.
-
Bei Verdacht auf UAW dient eine Online-Meldung (https://humanweb.pei.de) der Sicherheit der Pharmakotherapie.
-
Retinale Veränderungen nach Impfungen sind extrem selten.
-
Retinale Schäden durch Licht treten nur durch unsachgemäße Handhabung technischer oder medizinischer Geräte sowie ungeschützter Betrachtung der Sonne auf.
-
Strahlenbedingte Schäden der Netzhaut führen zu vaskulären Veränderungen.
Publikationsverlauf
Artikel online veröffentlicht:
17. November 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Kellner U, Kellner S, Weinitz S. et al. [Toxic retinopathies]. Ophthalmologe 2020; 117: 1247-1266 DOI: 10.1007/s00347-020-01260-w.
- 2 Li J, Yuan N, Chu WK. et al. Exposure to Secondhand Smoke in Children is Associated with a Thinner Retinal Nerve Fiber Layer: The Hong Kong Children Eye Study. Am J Ophthalmol 2021; 223: 91-99 DOI: 10.1016/j.ajo.2020.10.016.
- 3 Etminan M, Sodhi M, Mikelberg FS. et al. Risk of Ocular Adverse Events Associated With Use of Phosphodiesterase 5 Inhibitors in Men in the US. JAMA Ophthalmol 2022; 140: 480-484 DOI: 10.1001/jamaophthalmol.2022.0663.
- 4 Nita M, Grzybowski A. Smoking and Eye Pathologies. A Systemic Review. Part II. Retina Diseases, Uveitis, Optic Neuropathies, Thyroid-Associated Orbitopathy. Curr Pharm Des 2017; 23: 639-654 DOI: 10.2174/1381612823666170111095723.
- 5 Liu DW, Haq Z, Yang D. et al. Association between smoking history and optical coherence tomography angiography findings in diabetic patients without diabetic retinopathy. PloS One 2021; 16: e0253928 DOI: 10.1371/journal.pone.0253928.
- 6 Zhang J, Mitsuhashi T, Matsuo T. et al. Alcohol Consumption and Age-related Macular Degeneration: A Systematic Review and Dose-response Meta-analysis. Curr Eye Res 2021; 46: 1900-1907 DOI: 10.1080/02713683.2021.1942070.
- 7 Kuan V, Warwick A, Hingorani A. et al. Association of Smoking, Alcohol Consumption, Blood Pressure, Body Mass Index, and Glycemic Risk Factors With Age-Related Macular Degeneration: A Mendelian Randomization Study. JAMA Ophthalmol 2021; 139: 1299-1306 DOI: 10.1001/jamaophthalmol.2021.4601.
- 8 Hamann T, Wiest MRJ, Brinkmann M. et al. Assessment of the microvasculature in poppers maculopathy. Graefes Arch Clin Exp Ophthalmol 2022; 260: 1299-1306 DOI: 10.1007/s00417-021-05453-0.
- 9 Liberski S, Kaluzny BJ, Kociecki J. Methanol-induced optic neuropathy: a still-present problem. Arch Toxicol 2022; 96: 431-451 DOI: 10.1007/s00204-021-03202-0.
- 10 Hsu ST, Ponugoti A, Deaner JD. et al. Update on Retinal Drug Toxicities. Curr Ophthalmol Rep 2021; 9: 168-177 DOI: 10.1007/s40135-021-00277-x.
- 11 Doyno C, Sobieraj DM, Baker WL. Toxicity of chloroquine and hydroxychloroquine following therapeutic use or overdose. Clin Toxicol (Phila) 2021; 59: 12-23 DOI: 10.1080/15563650.2020.1817479.
- 12 Rosenbaum JT, Costenbader KH, Desmarais J. et al. American College of Rheumatology, American Academy of Dermatology, Rheumatologic Dermatology Society, and American Academy of Ophthalmology 2020 Joint Statement on Hydroxychloroquine Use With Respect to Retinal Toxicity. Arthritis Rheumatol 2021; 73: 908-911 DOI: 10.1002/art.41683.
- 13 Bui KM, Sadda SR, Salehi-Had H. Pseudovitelliform maculopathy associated with deferoxamine toxicity: multimodal imaging and electrophysiology of a rare entity. Digit J Ophthalmol 2017; 23: 11-15 DOI: 10.5693/djo.02.2016.12.001.
- 14 Lindeke-Myers A, Hanif AM, Jain N. Pentosan polysulfate maculopathy. Surv Ophthalmol 2022; 67: 83-96 DOI: 10.1016/j.survophthal.2021.05.005.
- 15 Sen S, Mandal S, Banerjee M. et al. Ethambutol-induced optic neuropathy: Functional and structural changes in the retina and optic nerve. Semin Ophthalmol 2022; DOI: 10.1080/08820538.2022.2085517.
- 16 Arora S, Surakiatchanukul T, Arora T. et al. Retinal toxicities of systemic anticancer drugs. Surv Ophthalmol 2022; 67: 97-148 DOI: 10.1016/j.survophthal.2021.05.007.
- 17 Garcia-Martin E, Ruiz de Gopegui E, Satue M. et al. Progressive Functional and Neuroretinal Affectation in Patients With Multiple Sclerosis Treated With Fingolimod. J Neuroophthalmol 2021; 41: e415-e423 DOI: 10.1097/WNO.0000000000000991.
- 18 Hu J, Vu JT, Hong B. et al. Uveitis and cystoid macular oedema secondary to topical prostaglandin analogue use in ocular hypertension and open angle glaucoma. Br J Ophthalmol 2020; 104: 1040-1044 DOI: 10.1136/bjophthalmol-2019-315280.
- 19 Shin YK, Lee GW, Kang SW. et al. Macular Abnormalities Associated With 5alpha-Reductase Inhibitor. JAMA Ophthalmol 2020; 138: 732-739 DOI: 10.1001/jamaophthalmol.2020.1279.
- 20 Araki T, Ishikawa H, Iwahashi C. et al. Central serous chorioretinopathy with and without steroids: A multicenter survey. PloS One 2019; 14: e0213110 DOI: 10.1371/journal.pone.0213110.
- 21 Mettler C, Monnet D, Kramkimel N. et al. Ocular Safety Profile of BRAF and MEK Inhibitors: Data from the World Health Organization Pharmacovigilance Database. Ophthalmology 2021; 128: 1748-1755 DOI: 10.1016/j.ophtha.2021.05.008.
- 22 Sudarshana DM, Konstantinou EK, Arepalli S. et al. The Prevalence of Adverse Ocular Hemorrhagic Events in Patients Utilizing Oral Anticoagulant and Antiplatelet Therapy in Routine Clinical Practice. Ophthalmic Surg Lasers Imaging Retina 2018; 49: 27-34 DOI: 10.3928/23258160-20171215-04.
- 23 Makuloluwa AK, Tiew S, Briggs M. Peri-operative management of ophthalmic patients on anti-thrombotic agents: a literature review. Eye (Lond) 2019; 33: 1044-1059 DOI: 10.1038/s41433-019-0382-6.
- 24 Agarwal M, Dutta Majumder P, Babu K. et al. Drug-induced uveitis: A review. Indian J Ophthalmol 2020; 68: 1799-1807 DOI: 10.4103/ijo.IJO_816_20.
- 25 Adler RA. Update on Rare Adverse Events from Osteoporosis Therapy and Bisphosphonate Drug Holidays. Endocrinol Metab Clin North Am 2021; 50: 193-203 DOI: 10.1016/j.ecl.2021.03.003.
- 26 Garweg JG. [Induction of Uveitis by Immune-Oncologic Therapies, Namely Checkpoint Inhibitors]. Klin Monbl Augenheilkd 2022; 239: 575-581 DOI: 10.1055/a-1766-6119.
- 27 Liu Y, Haq Z, Pasricha ND. et al. Acute Macular Neuroretinopathy Associated With an Oral FLT3 Inhibitor. JAMA Ophthalmol 2020; 138: 1104-1106 DOI: 10.1001/jamaophthalmol.2020.2815.
- 28 Yang MC, Lin KY. Drug-induced Acute Angle-closure Glaucoma: A Review. J Curr Glaucoma Pract 2019; 13: 104-109 DOI: 10.5005/jp-journals-10078-1261.
- 29 Jonsson H, Lehto M, Vanhatalo S. et al. Visual field defects after vigabatrin treatment during infancy: retrospective population-based study. Dev Med Child Neurol 2022; 64: 641-648 DOI: 10.1111/dmcn.15099.
- 30 Orssaud C, Nguyen DT, Rouzaud C. et al. [Screening and prevention of toxic optic neuropathies due to anti-mycobacterium therapies: proposal of recommendations]. J Fr Ophtalmol 2022; 45: 495-503 DOI: 10.1016/j.jfo.2021.08.016.
- 31 Alshehri M, Joury A. Ocular Adverse Effects of Amiodarone: A Systematic Review of Case Reports. Optom Vis Sci 2020; 97: 536-542 DOI: 10.1097/OPX.0000000000001534.
- 32 Patel D, Patel SN, Chaudhary V. et al. Complications of intravitreal injections: 2022. Curr Opin Ophthalmol 2022; 33: 137-146 DOI: 10.1097/ICU.0000000000000850.
- 33 Levin AM, Chaya CJ, Kahook MY. et al. Intraocular Pressure Elevation Following Intravitreal Anti-VEGF Injections: Short- and Long-term Considerations. J Glaucoma 2021; 30: 1019-1026 DOI: 10.1097/IJG.0000000000001894.
- 34 Melo GB, Cruz N, Emerson GG. et al. Critical analysis of techniques and materials used in devices, syringes, and needles used for intravitreal injections. Prog Retin Eye Res 2021; 80: 100862 DOI: 10.1016/j.preteyeres.2020.100862.
- 35 Franzese C, Takeuchi K, Carabello H. et al. Evaluation of a Novel Prefilled Syringe Concept for Ophthalmic Applications: A Formative Human Factors Study. PDA J Pharm Sci Technol 2022; 76: 19-33 DOI: 10.5731/pdajpst.2019.010835.
- 36 Raharja A, Neffendorf JE, Williamson TH. Retinal toxicity secondary to subconjunctival cefuroxime following pars plana vitrectomy: A case report and literature review. Am J Ophthalmol Case Rep 2022; 26: 101557 DOI: 10.1016/j.ajoc.2022.101557.
- 37 Awad D, Wilinska J, Gousia D. et al. Toxicity and phototoxicity in human ARPE-19 retinal pigment epithelium cells of dyes commonly used in retinal surgery. Eur J Ophthalmol 2018; 28: 433-440 DOI: 10.1177/1120672118766446.
- 38 Fine HF, Reshef ER, Prenner JL. et al. Clinical Findings in Triamcinolone-Associated Maculopathy. Retina 2019; 39: 761-765 DOI: 10.1097/IAE.0000000000002007.
- 39 Srivastava GK, Kalaiselvan V, Andres-Iglesias C. et al. Acute intraocular toxicity caused by perfluorocarbon liquids: safety control systems of medical devices. Graefes Arch Clin Exp Ophthalmol 2022; 260: 2103-2110 DOI: 10.1007/s00417-022-05578-w.
- 40 Dresp JH. Benchmarking different brands of perfluorocarbon liquids. Graefes Arch Clin Exp Ophthalmol 2021; 259: 21-27 DOI: 10.1007/s00417-020-04964-6.
- 41 Dresp JH. Benchmarking different brands of silicone oils. Graefes Arch Clin Exp Ophthalmol 2021; 259: 13-20 DOI: 10.1007/s00417-020-04809-2.
- 42 Chen Y, Lam Ip Y, Zhou L. et al. What Is the Cause of Toxicity of Silicone Oil?. Materials (Basel) 2021; 15: 269 DOI: 10.3390/ma15010269.
- 43 Cheng JY, Margo CE. Ocular adverse events following vaccination: overview and update. Surv Ophthalmol 2022; 67: 293-306 DOI: 10.1016/j.survophthal.2021.04.001.
- 44 Bolletta E, Iannetta D, Mastrofilippo V. et al. Uveitis and Other Ocular Complications Following COVID-19 Vaccination. J Clin Med 2021; 10: 5960 DOI: 10.3390/jcm10245960.
- 45 Vingolo EM. COVID-19 Vaccines in Inherited Retinal Degenerations (IRD), Fears, Ideas and Real Interactions. Clin Ophthalmol 2022; 16: 1413-1417 DOI: 10.2147/OPTH.S358558.
- 46 Begaj T, Schaal S. Sunlight and ultraviolet radiation-pertinent retinal implications and current management. Surv Ophthalmol 2018; 63: 174-192 DOI: 10.1016/j.survophthal.2017.09.002.
- 47 Mainster MA, Findl O, Dick HB. et al. The Blue Light Hazard Versus Blue Light Hype. Am J Ophthalmol 2022; 240: 51-57 DOI: 10.1016/j.ajo.2022.02.016.
- 48 Ouyang X, Yang J, Hong Z. et al. Mechanisms of blue light-induced eye hazard and protective measures: a review. Biomed Pharmacother 2020; 130: 110577 DOI: 10.1016/j.biopha.2020.110577.
- 49 Birtel J, Hildebrand GD, Charbel Issa P. Laser Pointer: A Possible Risk for the Retina. Klin Monbl Augenheilkd 2020; 237: 1187-1193 DOI: 10.1055/a-1250-8471.
- 50 Kohnen S. Light-induced damage of the retina through slit-lamp photography. Graefes Arch Clin Exp Ophthalmol 2000; 238: 956-959 DOI: 10.1007/s004170000216.
- 51 Wolffe M. How safe is the light during ophthalmic diagnosis and surgery. Eye (Lond) 2016; 30: 186-188 DOI: 10.1038/eye.2015.247.
- 52 Bedar MS, Kellner U. Digital 3D “Heads-up” Cataract Surgery: Safety Profile and Comparison with the Conventional Microscope System. Klin Monbl Augenheilkd 2022; 239: 991-995 DOI: 10.1055/a-1686-9124.
- 53 Garcia-OʼFarrill N, Pugazhendhi S, Karth PA. et al. Radiation retinopathy intricacies and advances in management. Semin Ophthalmol 2022; 37: 417-435 DOI: 10.1080/08820538.2021.2000623.