Synlett, Table of Contents Synlett 2023; 34(06): 673-677DOI: 10.1055/a-1881-0529 cluster Chemical Synthesis and Catalysis in India Synthesis of the Key Skeleton of Phosphoeleganin Authors Gour Hari Mandal Dhiman Saha Sourya Shankar Auddy Rajib Kumar Goswami ∗ Recommend Article Abstract Buy Article(opens in new window) All articles of this category(opens in new window) Abstract The asymmetric synthesis of the key skeleton of phosphoeleganin has been achieved for the first time by using a convergent approach. The salient features of this synthesis include amidation to install a glycine amide at the C-1 position, Wittig olefination to access the C5–C6 bond, Julia–Kocienski olefinations to prepare the C9–C10 and C13–C14 bonds, and a Takai olefination and a Sonogashira coupling to construct the C17–C18 and C18–C19 bonds, respectively. The route disclosed is highly modular, which will permit the synthesis of various analogues, useful for structure–activity relationship studies on phosphoeleganins. Full Text References References and Notes 1a Kato Y, Fusetani N, Matsunaga S, Hashimoto K, Fujita S, Furuya T. J. Am. Chem. Soc. 1986; 108: 2780 1b Boger DL, Hikota M, Lewis BM. J. Org. Chem. 1997; 62: 1748 1c Kohama T, Enokita R, Okazaki T, Miyaoka H, Torikata A, Inukai M, Kaneko I, Kagasaki T, Sakaida Y, Satoh A, Shiraishi A. J. Antibiot. 1993; 46: 1503 1d Thomasi SS, Ladeira C, Ferreira D, da Fontoura Sprenger R, Badino AC, Ferreira AG, Venâncio T. Helv. Chim. Acta 2016; 99: 281 1e Ozasa T, Tanaka K, Sasamata M, Kaniwa H, Shimizu M, Matsumoto H, Iwanami M. J. Antibiot. 1989; 42: 1339 1f Oku N, Takada K, Fuller RW, Wilson JA, Peach ML, Pannell LK, McMahon JB, Gustafson KR. J. Am. Chem. Soc. 2010; 132: 10278 1g Ai Y, Kozytska MV, Zou Y, Khartulyari AS, Smith AB. III. J. Am. Chem. Soc. 2015; 137: 15426 1h Ahlers A, de Haro T, Gabor B, Fürstner A. Angew. Chem. 2016; 128: 1428 1i Meissner A, Kishi T, Fujisawa Y, Murai Y, Takamura H, Kadota I. Tetrahedron Lett. 2018; 59: 4492 1j Sakurai K, Sakamoto K, Sasaki M, Fuwa H. Chem. Asian J. 2020; 15: 3494 2a Matsuhashi H, Shimada K. Tetrahedron 2002; 58: 5619 2b Shimada K, Kaburagi Y, Fukuyama T. J. Am. Chem. Soc. 2003; 125: 4048 2c Della-Felice F, Sarotti AM, Krische MJ, Pilli RA. J. Am. Chem. Soc. 2019; 141: 13778 2d Wang Y.-G, Takeyama R, Kobayashi Y. Angew. Chem. Int. Ed. 2006; 45: 3320 2e Sakurai K, Sasak M, Fuwa H. Angew. Chem. Int. Ed. 2018; 57: 5143 2f Evans DA, Gage JR, Leighton JL. J. Am. Chem. Soc. 1992; 114: 9434 2g Reddy YK, Falck JR. Org. Lett. 2002; 4: 969 3a Swingle MB, Amable L, Lawhorn BG, Buck SB, Burke CP, Ratti P, Fisher KL, Boger DL, Honkanen RE. J. Pharmacol. Exp. Ther. 2009; 45: 331 3b Paulson JR, Mause ER. V. Adv. Biol. Chem. 2013; 3: 36 3c Fabian L, Troscianczuk J, Forer A. Cell Chromosome 2007; 6: 1 3d Lewy DS, Gauss C.-M, Soenen DR, Boger DL. Curr. Med. Chem. 2002; 9: 2005 4a Imperatore C, Luciano P, Aiello A, Vitalone R, Irace C, Santamaria R, Li J, Guo Y, Menna M. J. Nat. Prod. 2016; 79: 1144 4b Luciano P, Imperatore C, Senese M, Aiello A, Casertano M, Guo Y.-W, Menna M. J. Nat. Prod. 2017; 80: 2118 5a Das S, Kuilya TK, Goswami RK. J. Org. Chem. 2015; 80: 6467 5b Saha D, Mandal GH, Goswami RK. J. Org Chem. 2021; 86: 10006 5c Kuilya TK, Goswami RK. Org. Lett. 2017; 19: 2366 5d Paul D, Saha S, Goswami RK. Org. Lett. 2018; 20: 4606 5e Saha D, Guchhait S, Goswami RK. Org. Lett. 2020; 22: 745 5f Guchhait S, Chatterjee S, Ampapathi RS, Goswami RK. J. Org. Chem. 2017; 82: 2414 5g Das S, Paul D, Goswami RK. Org. Lett. 2016; 18: 1908 5h Mandal GH, Saha D, Goswami RK. Org. Biomol. Chem. 2020; 18: 2346 6a Thompson DK, Hubert CH, Wightman RH. Tetrahedron 1993; 49: 3827 6b Phaosiri C, Proteau PJ. Bioorg. Med. Chem. Lett. 2004; 14: 5309 7a Candy M, Audran G, Bienaymé H, Bressy C, Pons J.-M. J. Org. Chem. 2010; 75: 1354 7b Mitsunobu O. Synthesis 1981; 1 8a Cichowicz NR. Nagorny P. Org. Lett. 2012; 14: 1058 8b Crimmins MT, Haley MW, O’Bryan EA. Org. Lett. 2011; 13: 4712 9 Volkmann RA, Kelbaugh PR, Nason DM, Jasys VJ. J. Org. Chem. 1992; 57: 4352 10 Alcaraz L, Harnett JJ, Mioskowski C, Martel JP, Le Gall T, Shin D.-S, Falck JR. Tetrahedron Lett. 1994; 35: 5449 11a Julia M, Paris J.-M. Tetrahedron Lett. 1973; 14: 4833 11b Blakemore PR, Cole WJ, Kocieński PJ, Morley A. Synlett 1998; 26 11c Lee J.-L, Lin C.-F, Hsieh L.-Y, Lin W.-R, Chiu H.-F, Wu Y.-C, Wang K.-S, Wu M.-J. Tetrahedron Lett. 2003; 44: 7833 12a Stork G, Zhao K. J. Am. Chem. Soc. 1990; 112: 5875 12b Williams GM, Roughley SD, Davies JE, Holmes AB, Adams JP. J. Am. Chem. Soc. 1999; 121: 4900 12c Crimmins MT, Powell MT. J. Am. Chem. Soc. 2003; 125: 7592 13a Sonogashira K. J. Organomet. Chem. 2002; 653: 46 13b Crimmins MT, She J. J. Am. Chem. Soc. 2004; 126: 12790 14 Mancuso A, Huang S.-L, Swern D. J. Org. Chem. 1978; 43: 2480 15a Hurem D, Dudding T. RSC Adv. 2014; 4: 15552 15b Kim N.-J, Moon H, Park T, Yun H, Jung W.-J, Chang DJ, Kim D.-D, Suh Y.-G. J. Org. Chem. 2010; 75: 7458 15c Brinkmann Y, Oger C, Guy A, Durand T, Galano J.-M. J. Org. Chem. 2010; 75: 2411 16 Compound 2 10% Pd/C (111 mg) was added to a stirred solution of 3 (370 mg, 0.4 mmol) in EtOAc (10 mL), under H2 (balloon) at rt, and the mixture was stirred for 40 h. The mixture was then filtered through a short pad of Celite that was washed with EtOAc (30 mL). The combined organic layers were concentrated under reduced pressure and purified by flash column chromatography [silica gel (100–200 mesh), 20% EtOAc–hexane] to give the corresponding saturated compound as a colorless oil; yield: (202 mg, 58%). Diphenylphosphoryl chloride (30 μl, 0.11 mmol) was added slowly to a solution of the saturated compound (50 mg, 0.055 mmol) in anhyd pyridine (5 mL) at 0 °C under argon, and the mixture was stirred at rt for 48 h. The reaction was quenched with ice–water, and the mixture was extracted with EtOAc (20 mL). The combined organic layers were washed successively with ice–water, 1 N aq HCl, sat. aq NaHCO3, and brine, then dried (Na2SO4) and concentrated in vacuo. The residue was purified by column chromatography [silica gel (100–200 mesh), 15–20% EtOAc–hexane] to give compound 2 as a liquid; yield: 47 mg (72%); [α]D 25 +7 (c 0.8, CHCl3). IR (neat): 3302, 2931 2872, 1733, 1612, 1454, 1388, 1067, 993 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.42–7.05 (m, 12 H), 6.15 (s, 1 H), 4.64–4.46 (m, 1 H), 3.93 (dt, J = 13.0, 5.1 Hz, 4 H), 3.74–3.47 (m, 2 H), 2.62 (t, J = 7.5 Hz, 2 H), 1.77–1.66 (m, 5 H), 1.42–1.20 (m, 62 H), 0.89–0.86 (m, 15 H), 0.15–0.06 (m, 12 H). 13C NMR (75 MHz, CDCl3): δ = 158.0, 155.8, 151.0, 150.9, 150.8, 129.8, 125.3, 125.2, 120.4, 120.3, 120.2, 108.0, 107.6, 84.9, 84.8, 83.4, 78.6, 78.4, 77.4, 74.4, 74.3, 72.3, 37.4, 33.8, 32.1, 30.4, 30.3, 30.2, 29.9, 29.8, 29.8, 29.7, 29.6, 29.5, 29.3, 28.8, 28.7, 28.2, 27.0, 26.4, 26.1, 26.1, 25.9, 25.5, 25.2, 22.9, 18.4, 18.3, 14.3, 1.2, 0.2, –4.1, –4.2, –4.3, –4.4. HRMS (ESI): m/z [M + H + Na]+ calcd for C63H112NNaO11PSi2: 1169.7487; found: 1169.779. Supplementary Material Supplementary Material Supporting Information (PDF) (opens in new window)