RSS-Feed abonnieren
DOI: 10.1055/a-1886-3959
Empfehlungen zur Ernährung von Personen mit Typ-2-Diabetes mellitus

Die DDG-Praxisempfehlungen werden regelmäßig zur zweiten Jahreshälfte aktualisiert. Bitte stellen Sie sicher, dass Sie jeweils die neueste Version lesen und zitieren.
Empfehlung 1: Fehlender Nutzen von low-carb für Gewichtsreduktion
Begründung: Aktuelle Auswertung
Stützende Quellenangabe: [394]
Empfehlung 2: Diabetesremission als primäres Ziel der Ernährungstherapie
Begründung: Aktuelle Auswertung
Stützende Quellenangabe: [395]
Empfehlung 3: Moderate Verbesserung des HbA1c und der Nüchternglukose unter Magnesiumsupplementierung ohne Effekt auf Insulin und HOMA
Begründung: –
Stützende Quellenangabe: [396]
Empfehlung 4: Fehlender Nutzen von low-carb für Gewichtsreduktion
Begründung: Aktuelle Auswertung
Stützende Quellenangabe: [394]
Publikationsverlauf
Artikel online veröffentlicht:
18. Oktober 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1
Beck J,
Greenwood DA,
Blanton L.
et al. 2017 National Standards for Diabetes Self-Management Education and Support.
Diabetes Care 2017; 40: 1409-1419
MissingFormLabel
- 2
Evert AB,
Dennison M,
Gardner CD.
et al. Nutrition Therapy for Adults With Diabetes or Prediabetes: A Consensus Report.
Diabetes Care 2019; 42: 731-754
MissingFormLabel
- 3
Evert AB.
et al
Stellungnahme des Ausschuss Ernährung der DDG zum Consensus Report: NutritionTherapy
for Adults with Diabetes or Prediabetes. Diabetes Care 2019; 42: 731-754 . Im internet:
https://www.deutsche-diabetes-gesellschaft.de/politik/stellungnahmen/stellungnahme-des-ausschuss-ernaehrung-der-ddg-zum-consensusreport-nutrition-therapy-for-adults-with-diabetes-or-prediabetes
MissingFormLabel
- 4
DeFronzo RA,
Bonadonna RC,
Ferrannini E.
Pathogenesis of NIDDM. A balanced overview. Diabetes Care 1992; 15: 318-368
MissingFormLabel
- 5
DeFronzo RA,
Eldor R,
Abdul-Ghani M.
Pathophysiologic approach to therapy in patients with newly diagnosed type 2 diabetes.
Diabetes Care 2013; 36 (Suppl. 02) S127-S138
MissingFormLabel
- 6
Lencioni C,
Lupi R,
Del Prato S.
Beta-cell failure in type 2 diabetes mellitus. Curr Diab Rep 2008; 8: 179-184
MissingFormLabel
- 7
[Anonymous].
U.K. prospective diabetes study 16. Overview of 6 years’ therapy of type II diabetes:
a progressive disease. U.K. Prospective Diabetes Study Group. Diabetes 1995; 44: 1249-1258
MissingFormLabel
- 8
Zaharia OP,
Strassburger K,
Strom A.
et al. Risk of diabetes-associated diseases in subgroups of patients with recent-onset
diabetes: a 5-year follow-up study. Lancet Diabetes Endocrinol 2019; 7: 684-694
MissingFormLabel
- 9
Kodama S,
Horikawa C,
Fujihara K.
et al. Quantitative relationship between body weight gain in adulthood and incident
type 2 diabetes: a meta-analysis. Obes Rev 2014; 15: 202-214
MissingFormLabel
- 10
Wing RR,
Lang W,
Wadden TA.
et al. Benefits of modest weight loss in improving cardiovascular risk factors in
overweight and obese individuals with type 2 diabetes. Diabetes Care 2011; 34: 1481-1486
MissingFormLabel
- 11
Steven S,
Hollingsworth KG,
Al-Mrabeh A.
et al. Very Low-Calorie Diet and 6 Months of Weight Stability in Type 2 Diabetes:
Pathophysiological Changes in Responders and Nonresponders. Diabetes Care 2016; 39:
808-815
MissingFormLabel
- 12
Jazet IM,
Pijl H,
Frölich M.
et al. Factors predicting the blood glucose lowering effect of a 30-day very low calorie
diet in obese Type 2 diabetic patients. Diabet Med 2005; 22: 52-55
MissingFormLabel
- 13
Lean MEJ,
Leslie WS,
Barnes AC.
et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT):
an open-label, cluster-randomised trial. Lancet 2018; 391: 541-551
MissingFormLabel
- 14
Bangalore S,
Fayyad R,
DeMicco DA.
et al. Body Weight Variability and Cardiovascular Outcomes in Patients With Type 2
Diabetes Mellitus. Circ Cardiovasc Qual Outcomes 2018; 11: e004724
MissingFormLabel
- 15
Yeboah P,
Hsu FC,
Bertoni AG.
et al. Body Mass Index, Change in Weight, Body Weight Variability and Outcomes in
Type 2 Diabetes Mellitus (from the ACCORD Trial). Am J Cardiol 2019; 123: 576-581
MissingFormLabel
- 16
Pagidipati NJ,
Zheng Y,
Green JB.
et al. Association of obesity with cardiovascular outcomes in patients with type 2
diabetes and cardiovascular disease: Insights from TECOS. Am Heart J 2020; 219: 47-57
MissingFormLabel
- 17
Bodegard J,
Sundström J,
Svennblad B.
et al. Changes in body mass index following newly diagnosed type 2 diabetes and risk
of cardiovascular mortality: a cohort study of 8486 primary-care patients. Diabetes
Metab 2013; 39: 306-313
MissingFormLabel
- 18
Weinheimer EM,
Sands LP,
Campbell WW.
A systematic review of the separate and combined effects of energy restriction and
exercise on fat-free mass in middle-aged and older adults: implications for sarcopenic
obesity. Nutr Rev 2010; 68: 375-388
MissingFormLabel
- 19
Zaccardi F,
Dhalwani NN,
Papamargaritis D.
et al. Nonlinear association of BMI with all-cause and cardiovascular mortality in
type 2 diabetes mellitus: a systematic review and meta-analysis of 414587 participants
in prospective studies. Diabetologia 2017; 60: 240-248
MissingFormLabel
- 20
Salehidoost R,
Mansouri A,
Amini M.
et al. Body mass index and the all-cause mortality rate in patients with type 2 diabetes
mellitus. Acta Diabetol 2018; 55: 569-577
MissingFormLabel
- 21
Hainer V,
Aldhoon-Hainerová I.
Obesity paradox does exist. Diabetes Care 2013; 36 (Suppl. 02) S276-S281
MissingFormLabel
- 22
Murphy RA,
Reinders I,
Garcia ME.
et al. Adipose tissue, muscle, and function: potential mediators of associations between
body weight and mortality in older adults with type 2 diabetes. Diabetes Care 2014;
37: 3213-3219
MissingFormLabel
- 23
Bales CW,
Porter Starr KN.
Obesity Interventions for Older Adults: Diet as a Determinant of Physical Function.
Adv Nutr 2018; 9: 151-159
MissingFormLabel
- 24
Uusitupa M,
Khan TA,
Viguiliouk E.
et al. Prevention of Type 2 Diabetes by Lifestyle Changes: A Systematic Review and
Meta-Analysis. Nutrients 2019; 11: 2611
MissingFormLabel
- 25
Raben A,
Vestentoft PS,
Brand-Miller J.
et al. The PREVIEW intervention study: Results from a 3-year randomized 2 × 2 factorial
multinational trial investigating the role of protein, glycaemic index and physical
activity for prevention of type 2 diabetes. Diabetes Obes Metab 2021; 23: 324-337
MissingFormLabel
- 26
Gregg EW,
Chen H,
Wagenknecht LE.
et al. Association of an intensive lifestyle intervention with remission of type 2
diabetes. JAMA 2012; 308: 2489-2496
MissingFormLabel
- 27
Anderson JW,
Konz EC,
Frederich RC.
et al. Long-term weight-loss maintenance: a meta-analysis of US studies. Am J Clin
Nutr 2001; 74: 579-584
MissingFormLabel
- 28 Bundesgesundheitsministerium 2015. Telemedizin. Im Internet (Stand: 09.04.2021): https://www.bundesgesundheitsministerium.de/service/begriffe-von-a-z/t/telemedizin.html
- 29
Su D,
McBride C,
Zhou J.
et al. Does nutritional counseling in telemedicine improve treatment outcomes for
diabetes? A systematic review and meta-analysis of results from 92 studies. J Telemed
Telecare 2016; 22: 333-347
MissingFormLabel
- 30
Kempf K,
Altpeter B,
Berger J.
et al. Efficacy of the Telemedical Lifestyle intervention Program TeLiPro in Advanced
Stages of Type 2 Diabetes: A Randomized Controlled Trial. Diabetes Care 2017; 40:
863-871
MissingFormLabel
- 31
Belalcazar LM,
Haffner SM,
Lang W.
et al. Lifestyle intervention and/or statins for the reduction of C-reactive protein
in type 2 diabetes: from the look AHEAD study. Obesity (Silver Spring) 2013; 21: 944-950
MissingFormLabel
- 32
Colquitt JL,
Pickett K,
Loveman E.
et al. Surgery for weight loss in adults. Cochrane Database Syst Rev 2014; 8: CD003641
MissingFormLabel
- 33
Patel KV,
Bahnson JL,
Gaussoin SA.
et al. Association of Baseline and Longitudinal Changes in Body Composition Measures
With Risk of Heart Failure and Myocardial Infarction in Type 2 Diabetes: Findings
From the Look AHEAD Trial. Circulation 2020; 142: 2420-2430
MissingFormLabel
- 34
Franz MJ,
Boucher JL,
Rutten-Ramos S.
et al. Lifestyle weight-loss intervention outcomes in overweight and obese adults
with type 2 diabetes: a systematic review and meta-analysis of randomized clinical
trials. J Acad Nutr Diet 2015; 115: 1447-1463
MissingFormLabel
- 35
Murgatroyd PR,
Goldberg GR,
Leahy FE.
et al. Effects of inactivity and diet composition on human energy balance. Int J Obes
Relat Metab Disord 1999; 23: 1269-1275
MissingFormLabel
- 36
Stubbs RJ,
Sepp A,
Hughes DA.
et al. The effect of graded levels of exercise on energy intake and balance in free-living
women. Int J Obes Relat Metab Disord 2002; 26: 866-869
MissingFormLabel
- 37
Granados K,
Stephens BR,
Malin SK.
et al. Appetite regulation in response to sitting and energy imbalance. Appl Physiol
Nutr Metab 2012; 37: 323-333
MissingFormLabel
- 38
Hägele FA,
Büsing F,
Nas A.
et al. Appetite Control Is Improved by Acute Increases in Energy Turnover at Different
Levels of Energy Balance. J Clin Endocrinol Metab 2019; 104: 4481-4491
MissingFormLabel
- 39
Douglas JA,
King JA,
Clayton DJ.
et al. Acute effects of exercise on appetite, ad libitum energy intake and appetite-regulatory
hormones in lean and overweight/obese men and women. Int J Obes (Lond) 2017; 41: 1737-1744
MissingFormLabel
- 40
Savikj M,
Zierath JR.
Train like an athlete: applying exercise interventions to manage type 2 diabetes.
Diabetologia 2020; 63: 1491-1499
MissingFormLabel
- 41
Büsing F,
Hägele FA,
Nas A.
et al. Impact of energy turnover on the regulation of glucose homeostasis in healthy
subjects. Nutr Diabetes 2019; 9: 22
MissingFormLabel
- 42
Larsen JJ,
Dela F,
Kjaer M.
et al. The effect of moderate exercise on postprandial glucose homeostasis in NIDDM
patients. Diabetologia 1997; 40: 447-453
MissingFormLabel
- 43
Heden TD,
Winn NC,
Mari A.
et al. Postdinner resistance exercise improves postprandial risk factors more effectively
than predinner resistance exercise in patients with type 2 diabetes. J Appl Physiol
(1985) 2015; 118: 624-634
MissingFormLabel
- 44
Reynolds AN,
Mann JI,
Williams S.
et al. Advice to walk after meals is more effective for lowering postprandial glycaemia
in type 2 diabetes mellitus than advice that does not specify timing: a randomised
crossover study. Diabetologia 2016; 59: 2572-2578
MissingFormLabel
- 45
Gaudet-Savard T,
Ferland A,
Broderick TL.
et al. Safety and magnitude of changes in blood glucose levels following exercise
performed in the fasted and the postprandial state in men with type 2 diabetes. Eur
J Cardiovasc Prev Rehabil 2007; 14: 831-836
MissingFormLabel
- 46
DiPietro L,
Gribok A,
Stevens MS.
et al. Three 15-min bouts of moderate postmeal walking significantly improves 24-h
glycemic control in older people at risk for impaired glucose tolerance. Diabetes
Care 2013; 36: 3262-3268
MissingFormLabel
- 47
Seidelmann SB,
Claggett B,
Cheng S.
et al. Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis.
Lancet Public Health 2018; 3: e419-e428
MissingFormLabel
- 48
Davies MJ,
D’Alessio DA,
Fradkin J.
et al. Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by
the American Diabetes Association (ADA) and the European Association for the Study
of Diabetes (EASD). Diabetes Care 2018; 41: 2669-2701
MissingFormLabel
- 49
Schwingshackl L,
Chaimani A,
Hoffmann G.
et al. A network meta-analysis on the comparative efficacy of different dietary approaches
on glycaemic control in patients with type 2 diabetes mellitus. Eur J Epidemiol 2018;
33: 157-170
MissingFormLabel
- 50
Schwingshackl L,
Hoffmann G,
Iqbal K.
et al. Food groups and intermediate disease markers: a systematic review and network
meta-analysis of randomized trials. Am J Clin Nutr 2018; 108: 576-586
MissingFormLabel
- 51
Neuenschwander M,
Ballon A,
Weber KS.
et al. Role of diet in type 2 diabetes incidence: umbrella review of meta-analyses
of prospective observational studies. BMJ 2019; 366: l2368
MissingFormLabel
- 52
Ge L,
Sadeghirad B,
Ball GDC.
et al. Comparison of dietary macronutrient patterns of 14 popular named dietary programmes
for weight and cardiovascular risk factor reduction in adults: systematic review and
network meta-analysis of randomised trials. BMJ 2020; 369: m696
MissingFormLabel
- 53
Goldenberg JZ,
Day A,
Brinkworth GD.
et al. Efficacy and safety of low and very low carbohydrate diets for type 2 diabetes
remission: systematic review and meta-analysis of published and unpublished randomized
trial data. BMJ 2021; 372: m4743
MissingFormLabel
- 54
Schwingshackl L,
Nitschke K,
Zähringer J.
et al. Impact of Meal Frequency on Anthropometric Outcomes: A Systematic Review and
Network Meta-Analysis of Randomized Controlled Trials. Adv Nutr 2020; 11: 1108-1122
MissingFormLabel
- 55
Della Corte KW,
Perrar I,
Penczynski KJ.
et al. Effect of Dietary Sugar Intake on Biomarkers of Subclinical Inflammation: A
Systematic Review and Meta-Analysis of Intervention Studies. Nutrients 2018; 10: 606
MissingFormLabel
- 56
Schwingshackl L,
Chaimani A,
Schwedhelm C.
et al. Comparative effects of different dietary approaches on blood pressure in hypertensive
and pre-hypertensive patients: A systematic review and network meta-analysis. Crit
Rev Food Sci Nutr 2019; 59: 2674-2687
MissingFormLabel
- 57 Thom G, Messow CM, Leslie WS. et al. Predictors of type 2 diabetes remission in the Diabetes Remission Clinical Trial (DiRECT). Diabet Med 2020; e14395
- 58
de Souza RJ,
Mente A,
Maroleanu A.
et al. Intake of saturated and trans unsaturated fatty acids and risk of all cause
mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis
of observational studies. BMJ 2015; 351: h3978
MissingFormLabel
- 59
Astrup A,
Magkos F,
Bier DM.
et al. Saturated Fats and Health: A Reassessment and Proposal for Food-Based Recommendations:
JACC State-of-the-Art Review. J Am Coll Cardiol 2020; 76: 844-857
MissingFormLabel
- 60
Pimpin L,
Wu JHY,
Haskelberg H.
et al. Is Butter Back? A Systematic Review and Meta-Analysis of Butter Consumption
and Risk of Cardiovascular Disease, Diabetes, and Total Mortality. PLoS One 2016;
11: e0158118
MissingFormLabel
- 61
Benatar JR,
Sidhu K,
Stewart RAH.
Effects of high and low fat dairy food on cardio-metabolic risk factors: a meta-analysis
of randomized studies. PLoS One 2013; 8: e76480
MissingFormLabel
- 62
Hooper L,
Abdelhamid AS,
Jimoh OF.
et al. Effects of total fat intake on body fatness in adults. Cochrane Database Syst
Rev 2020; 6: CD013636
MissingFormLabel
- 63
Hooper L,
Martin N,
Jimoh OF.
et al. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database
Syst Rev 2020; 8: CD011737
MissingFormLabel
- 64
Belalcazar LM,
Reboussin DM,
Haffner SM.
et al. A 1-year lifestyle intervention for weight loss in individuals with type 2
diabetes reduces high C-reactive protein levels and identifies metabolic predictors
of change: from the Look AHEAD (Action for Health in Diabetes) study. Diabetes Care
2010; 33: 2297-2303
MissingFormLabel
- 65
Lu M,
Wan Y,
Yang B.
et al. Effects of low-fat compared with high-fat diet on cardiometabolic indicators
in people with overweight and obesity without overt metabolic disturbance: a systematic
review and meta-analysis of randomised controlled trials. Br J Nutr 2018; 119: 96-108
MissingFormLabel
- 66
Wu JHY,
Marklund M,
Imamura F.
et al. Omega-6 fatty acid biomarkers and incident type 2 diabetes: pooled analysis
of individual-level data for 39 740 adults from 20 prospective cohort studies. Lancet
Diabetes Endocrinol 2017; 5: 965-974
MissingFormLabel
- 67
Li J,
Guasch-Ferré M,
Li Y.
et al. Dietary intake and biomarkers of linoleic acid and mortality: systematic review
and meta-analysis of prospective cohort studies. Am J Clin Nutr 2020; 112: 150-167
MissingFormLabel
- 68
an Pan A,
Chen M,
Chowdhury R.
et al. α-Linolenic acid and risk of cardiovascular disease: a systematic review and
meta-analysis. Am J Clin Nutr 2012; 96: 1262-1273
MissingFormLabel
- 69
Abdelhamid AS,
Martin N,
Bridges C.
et al. Polyunsaturated fatty acids for the primary and secondary prevention of cardiovascular
disease. Cochrane Database Syst Rev 2018; 11: CD012345
MissingFormLabel
- 70
Abdelhamid AS,
Brown TJ,
Brainard JS.
et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular
disease. Cochrane Database Syst Rev 2020; 3: CD003177
MissingFormLabel
- 71
Brown TJ,
Brainard J,
Song F.
et al. Omega-3, omega-6, and total dietary polyunsaturated fat for prevention and
treatment of type 2 diabetes mellitus: systematic review and meta-analysis of randomised
controlled trials. BMJ 2019; 366: l4697
MissingFormLabel
- 72
Qian F,
Korat AA,
Malik V.
et al. Metabolic Effects of Monounsaturated Fatty Acid-Enriched Diets Compared With
Carbohydrate or Polyunsaturated Fatty Acid-Enriched Diets in Patients With Type 2
Diabetes: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Diabetes
Care 2016; 39: 1448-1457
MissingFormLabel
- 73
Jovanovski E,
de Castro Ruiz Marques A,
Li D.
et al. Effect of high-carbohydrate or high-monounsaturated fatty acid diets on blood
pressure: a systematic review and meta-analysis of randomized controlled trials. Nutr
Rev 2019; 77: 19-31
MissingFormLabel
- 74
Zhang YY,
Liu W,
Zhao TY.
et al. Efficacy of Omega-3 Polyunsaturated Fatty Acids Supplementation in Managing
Overweight and Obesity: A Meta-Analysis of Randomized Clinical Trials. J Nutr Health
Aging 2017; 21: 187-192
MissingFormLabel
- 75
Lin N,
Shi JJ,
Li YM.
et al. What is the impact of n-3 PUFAs on inflammation markers in Type 2 diabetic
mellitus populations?: a systematic review and meta-analysis of randomized controlled
trials. Lipids Health Dis 2016; 15: 133
MissingFormLabel
- 76
Reis CEG,
Landim KC,
Nunes ACS.
et al. Safety in the hypertriglyceridemia treatment with N-3 polyunsaturated fatty
acids on glucose metabolism in subjects with type 2 diabetes mellitus. Nutr Hosp 2014;
31: 570-576
MissingFormLabel
- 77
Gao L,
Cao J,
Mao Q.
et al. Influence of omega-3 polyunsaturated fatty acid-supplementation on platelet
aggregation in humans: a meta-analysis of randomized controlled trials. Atherosclerosis
2013; 226: 328-334
MissingFormLabel
- 78
He XX,
Wu XL,
Chen RP.
et al. Effectiveness of Omega-3 Polyunsaturated Fatty Acids in Non-Alcoholic Fatty
Liver Disease: A Meta-Analysis of Randomized Controlled Trials. PLoS One 2016; 11:
e0162368
MissingFormLabel
- 79
Li N,
Yue H,
Jia M.
et al. Effect of low-ratio n-6/n-3 PUFA on blood glucose: a meta-analysis. Food Funct
2019; 10: 4557-4565
MissingFormLabel
- 80
Wanders AJ,
Blom WAM,
Zock PL.
et al. Plant-derived polyunsaturated fatty acids and markers of glucose metabolism
and insulin resistance: a meta-analysis of randomized controlled feeding trials. BMJ
Open Diabetes Res Care 2019; 7: e000585
MissingFormLabel
- 81
Abbott KA,
Burrows TL,
Thota RN.
et al. Do ω-3 PUFAs affect insulin resistance in a sex-specific manner? A systematic
review and meta-analysis of randomized controlled trials. Am J Clin Nutr 2016; 104:
1470-1484
MissingFormLabel
- 82
Jovanovski E,
Li D,
Thanh Ho HV.
et al. The effect of alpha-linolenic acid on glycemic control in individuals with
type 2 diabetes: A systematic review and meta-analysis of randomized controlled clinical
trials. Medicine (Baltimore) 2017; 96: e6531
MissingFormLabel
- 83
Faris MAI,
Jahrami H,
BaHammam A.
et al. A systematic review, meta-analysis, and meta-regression of the impact of diurnal
intermittent fasting during Ramadan on glucometabolic markers in healthy subjects.
Diabetes Res Clin Pract 2020; 165: 108226
MissingFormLabel
- 84
Mirmiran P,
Bahadoran Z,
Gaeini Z.
et al. Effects of Ramadan intermittent fasting on lipid and lipoprotein parameters:
An updated meta-analysis. Nutr Metab Cardiovasc Dis 2019; 29: 906-915
MissingFormLabel
- 85
Fernando HA,
Zibellini J,
Harris RA.
et al. Effect of Ramadan Fasting on Weight and Body Composition in Healthy Non-Athlete
Adults: A Systematic Review and Meta-Analysis. Nutrients 2019; 11: 478
MissingFormLabel
- 86
Horne BD,
May HT,
Anderson JL.
et al. Usefulness of routine periodic fasting to lower risk of coronary artery disease
in patients undergoing coronary angiography. Am J Cardiol 2008; 102: 814-819
MissingFormLabel
- 87
Horne BD,
Muhlestein JB,
May HT.
et al. Relation of routine, periodic fasting to risk of diabetes mellitus, and coronary
artery disease in patients undergoing coronary angiography. Am J Cardiol 2012; 109:
1558-1562
MissingFormLabel
- 88
Schwingshackl L,
Zähringer J,
Nitschke K.
et al. Impact of intermittent energy restriction on anthropometric outcomes and intermediate
disease markers in patients with overweight and obesity: systematic review and meta-analyses.
Crit Rev Food Sci Nutr 2021; 61: 1293-1304
MissingFormLabel
- 89
Park J,
Seo YG,
Paek YJ.
et al. Effect of alternate-day fasting on obesity and cardiometabolic risk: A systematic
review and meta-analysis. Metabolism 2020; 111: 154336
MissingFormLabel
- 90
Harris L,
Hamilton S,
Azevedo LB.
et al. Intermittent fasting interventions for treatment of overweight and obesity
in adults: a systematic review and meta-analysis. JBI Database System Rev Implement
Rep 2018; 16: 507-547
MissingFormLabel
- 91
Seimon RV,
Roekenes JA,
Zibellini J.
et al. Do intermittent diets provide physiological benefits over continuous diets
for weight loss? A systematic review of clinical trials. Mol Cell Endocrinol 2015;
418 Pt 2: 153-172
MissingFormLabel
- 92
Horne BD,
Muhlestein JB,
Anderson JL.
Health effects of intermittent fasting: hormesis or harm? A systematic review. Am
J Clin Nutr 2015; 102: 464-470
MissingFormLabel
- 93
Borgundvaag E,
Mak J,
Kramer CK.
Metabolic Impact of Intermittent Fasting in Patients With Type 2 Diabetes Mellitus:
A Systematic Review and Meta-analysis of Interventional Studies. J Clin Endocrinol
Metab 2021; 106: 902-911
MissingFormLabel
- 94
Parr EB,
Devlin BL,
Lim KHC.
et al. Time-Restricted Eating as a Nutrition Strategy for Individuals with Type 2
Diabetes: A Feasibility Study. Nutrients 2020; 12: 3228
MissingFormLabel
- 95
Carter S,
Clifton PM,
Keogh JB.
The effects of intermittent compared to continuous energy restriction on glycaemic
control in type 2 diabetes; a pragmatic pilot trial. Diabetes Res Clin Pract 2016;
122: 106-112
MissingFormLabel
- 96
Carter S,
Clifton PM,
Keogh JB.
The effect of intermittent compared with continuous energy restriction on glycaemic
control in patients with type 2 diabetes: 24-month follow-up of a randomised noninferiority
trial. Diabetes Res Clin Pract 2019; 151: 11-19
MissingFormLabel
- 97
Corley BT,
Carroll RW,
Hall RM.
et al. Intermittent fasting in Type 2 diabetes mellitus and the risk of hypoglycaemia:
a randomized controlled trial. Diabet Med 2018; 35: 588-594
MissingFormLabel
- 98
Henry RR,
Wiest-Kent TA,
Scheaffer L.
et al. Metabolic consequences of very-low-calorie diet therapy in obese non-insulin-dependent
diabetic and nondiabetic subjects. Diabetes 1986; 35: 155-164
MissingFormLabel
- 99
Amatruda JM,
Richeson JF,
Welle SL.
et al. The safety and efficacy of a controlled low-energy (‘very-low-calorie’) diet
in the treatment of non-insulin-dependent diabetes and obesity. Arch Intern Med 1988;
148: 873-877
MissingFormLabel
- 100
Rotella CM,
Cresci B,
Mannucci E.
et al. Short cycles of very low calorie diet in the therapy of obese type II diabetes
mellitus. J Endocrinol Invest 1994; 17: 171-179
MissingFormLabel
- 101
Dhindsa P,
Scott AR,
Donnelly R.
Metabolic and cardiovascular effects of very-low-calorie diet therapy in obese patients
with Type 2 diabetes in secondary failure: outcomes after 1 year. Diabet Med 2003;
20: 319-324
MissingFormLabel
- 102
ADA.
et al. Standards of medical care in diabetes 2022. Clin Diabetes 2022; 40: 10-38
MissingFormLabel
- 103
Lean MEJ,
Leslie WS,
Barnes AC.
et al. Durability of a primary care-led weight-management intervention for remission
of type 2 diabetes: 2-year results of the DiRECT open-label, cluster-randomised trial.
Lancet Diabetes Endocrinol 2019; 7: 344-355
MissingFormLabel
- 104 Maggio CA, Pi-Sunyer FX. Obesity and type 2 diabetes. Endocrinol Metab Clin North Am 2003; 32: 805-822, viii
- 105 Wolf AM, Colditz GA. Current estimates of the economic cost of obesity in the United States. Obes Res 1998; 6: 97-106
- 106
Colditz GA,
Willett WC,
Rotnitzky A.
et al. Weight gain as a risk factor for clinical diabetes mellitus in women. Ann Intern
Med 1995; 122: 481-486
MissingFormLabel
- 107 Anderson JW, Kendall CWC, Jenkins DJA. Importance of weight management in type 2 diabetes: review with meta-analysis of clinical studies. J Am Coll Nutr 2003; 22: 331-339
- 108
Leslie WS,
Taylor R,
Harris L.
et al. Weight losses with low-energy formula diets in obese patients with and without
type 2 diabetes: systematic review and meta-analysis. Int J Obes (Lond) 2017; 41:
96-101
MissingFormLabel
- 109
McCombie L,
Brosnahan N,
Ross H.
et al. Filling the intervention gap: service evaluation of an intensive nonsurgical
weight management programme for severe and complex obesity. J Hum Nutr Diet 2019;
32: 329-337
MissingFormLabel
- 110
Jazet IM,
de Craen AJ,
van Schie EM.
et al. Sustained beneficial metabolic effects 18 months after a 30-day very low calorie
diet in severely obese, insulin-treated patients with type 2 diabetes. Diabetes Res
Clin Pract 2007; 77: 70-76
MissingFormLabel
- 111
Kempf K,
Schloot NC,
Gärtner B.
et al. Meal replacement reduces insulin requirement, HbA1c and weight long-term in
type 2 diabetes patients with 100 U insulin per day. J Hum Nutr Diet 2014; 27 (Suppl.
02) 21-27
MissingFormLabel
- 112
Kempf K,
Röhling M,
Niedermeier K.
et al. Individualized Meal Replacement Therapy Improves Clinically Relevant Long-Term
Glycemic Control in Poorly Controlled Type 2 Diabetes Patients. Nutrients 2018; 10:
1022
MissingFormLabel
- 113
Taylor R,
Leslie WS,
Barnes AC.
et al. Clinical and metabolic features of the randomised controlled Diabetes Remission
Clinical Trial (DiRECT) cohort. Diabetologia 2018; 61: 589-598
MissingFormLabel
- 114
Halle M,
Röhling M,
Banzer W.
et al. Meal replacement by formula diet reduces weight more than a lifestyle intervention
alone in patients with overweight or obesity and accompanied cardiovascular risk factors-the
ACOORH trial. Eur J Clin Nutr 2021; 75: 661-669
MissingFormLabel
- 115
Röhling M,
Kempf K,
Banzer W.
et al. Prediabetes Conversion to Normoglycemia Is Superior Adding a Low-Carbohydrate
and Energy Deficit Formula Diet to Lifestyle Intervention-A 12-Month Subanalysis of
the ACOORH Trial. Nutrients 2020; 12: 2022
MissingFormLabel
- 116 Rosenfeld RM, Kelly JH, Agarwal M. et al. Dietary intervention to treat T2DM in Adults with a goal of remission: An Expert Consensus Statement from the American College of Lifestyle Medcine. Am J Lifestyle Med 2022; 16: 342-362
- 117
Holman RR,
Paul SK,
Bethel MA.
et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J
Med 2008; 359: 1577-1589
MissingFormLabel
- 118
Haslacher H,
Fallmann H,
Waldhäusl C.
et al. Type 2 diabetes care: Improvement by standardization at a diabetes rehabilitation
clinic. An observational report. PLoS One 2019; 14: e0226132
MissingFormLabel
- 119
Paul SK,
Shaw JE,
Montvida O.
et al. Weight gain in insulin-treated patients by body mass index category at treatment
initiation: new evidence from real-world data in patients with type 2 diabetes. Diabetes
Obes Metab 2016; 18: 1244-1252
MissingFormLabel
- 120
American Diabetes Association.
5. Facilitating Behavior Change and Well-being to Improve Health Outcomes: Standards
of Medical Care in Diabetes-2020. Diabetes Care 2020; 43: S48-S65
MissingFormLabel
- 121
Dyson PA,
Twenefour D,
Breen C.
et al. Diabetes UK evidence-based nutrition guidelines for the prevention and management
of diabetes. Diabet Med 2018; 35: 541-547
MissingFormLabel
- 122
Dworatzek PD,
Arcudi K,
Gougeon R.
et al. Nutrition therapy. Can J Diabetes 2013; 37 (Suppl. 01) S45-S55
MissingFormLabel
- 123
Hallberg SJ,
Dockter NE,
Kushner JA.
et al. Improving the scientific rigour of nutritional recommendations for adults with
type 2 diabetes: A comprehensive review of the American Diabetes Association guideline-recommended
eating patterns. Diabetes Obes Metab 2019; 21: 1769-1779
MissingFormLabel
- 124
Salas-Salvadó J,
Becerra-Tomás N,
Papandreou C.
et al. Dietary Patterns Emphasizing the Consumption of Plant Foods in the Management
of Type 2 Diabetes: A Narrative Review. Adv Nutr 2019; 10: S320-S331
MissingFormLabel
- 125
Viguiliouk E,
Kendall CW,
Kahleová H.
et al. Effect of vegetarian dietary patterns on cardiometabolic risk factors in diabetes:
A systematic review and meta-analysis of randomized controlled trials. Clin Nutr 2019;
38: 1133-1145
MissingFormLabel
- 126
Papamichou D,
Panagiotakos DB,
Itsiopoulos C.
Dietary patterns and management of type 2 diabetes: A systematic review of randomised
clinical trials. Nutr Metab Cardiovasc Dis 2019; 29: 531-543
MissingFormLabel
- 127
Ohlsson B.
An Okinawan-based Nordic diet improves glucose and lipid metabolism in health and
type 2 diabetes, in alignment with changes in the endocrine profile, whereas zonulin
levels are elevated. Exp Ther Med 2019; 17: 2883-2893
MissingFormLabel
- 128
Daneshzad E,
Emami S,
Darooghegi Mofrad M.
et al. Association of modified Nordic diet with cardiovascular risk factors among
type 2 diabetes patients: a cross-sectional study. J Cardiovasc Thorac Res 2018; 10:
153-161
MissingFormLabel
- 129
Via MA,
Mechanick JI.
Nutrition in Type 2 Diabetes and the Metabolic Syndrome. Med Clin North Am 2016; 100:
1285-1302
MissingFormLabel
- 130 Porrata-Maury C, Hernández-Triana M, Ruiz-Álvarez V. et al. Ma-Pi 2 macrobiotic diet and type 2 diabetes mellitus: pooled analysis of short-term intervention studies. Diabetes Metab Res Rev 2014; 30 (Suppl. 01) 55-66
- 131
Garvey WT,
Mechanick JI,
Brett EM.
et al. American Association of Clinical Endocrinologists and American College of Endocrinology
Comprehensive CLINICAL Practice Guidelines for Medical Care of Patients with Obesity.
Endocr Pract 2016; 22 (Suppl. 03) 1-203
MissingFormLabel
- 132
Ajala O,
English P,
Pinkney J.
Systematic review and meta-analysis of different dietary approaches to the management
of type 2 diabetes. Am J Clin Nutr 2013; 97: 505-516
MissingFormLabel
- 133
Huo R,
Du T,
Xu Y.
et al. Effects of Mediterranean-style diet on glycemic control, weight loss and cardiovascular
risk factors among type 2 diabetes individuals: a meta-analysis. Eur J Clin Nutr 2015;
69: 1200-1208
MissingFormLabel
- 134
Pan B,
Wu Y,
Yang Q.
et al. The impact of major dietary patterns on glycemic control, cardiovascular risk
factors, and weight loss in patients with type 2 diabetes: A network meta-analysis.
J Evid Based Med 2019; 12: 29-39
MissingFormLabel
- 135
Johannesen CO,
Dale HF,
Jensen C.
et al. Effects of Plant-Based Diets on Outcomes Related to Glucose Metabolism: A Systematic
Review. Diabetes Metab Syndr Obes 2020; 13: 2811-2822
MissingFormLabel
- 136
Toumpanakis A,
Turnbull T,
Alba-Barba I.
Effectiveness of plant-based diets in promoting well-being in the management of type
2 diabetes: a systematic review. BMJ Open Diabetes Res Care 2018; 6: e000534
MissingFormLabel
- 137
Tran E,
Dale HF,
Jensen C.
et al. Effects of Plant-Based Diets on Weight Status: A Systematic Review. Diabetes
Metab Syndr Obes 2020; 13: 3433-3448
MissingFormLabel
- 138
Austin G,
Ferguson J,
Garg M.
et al. Effects of Plant-Based Diets on Weight Status in Type 2 Diabetes: A Systematic
Review and Meta-Analysis of Randomised Controlled Trials. Nutrients 2021; 13: 4099
MissingFormLabel
- 139
Esposito K,
Maiorino MI,
Bellastella G.
et al. A journey into a Mediterranean diet and type 2 diabetes: a systematic review
with meta-analyses. BMJ Open 2015; 5: e008222
MissingFormLabel
- 140
Carter P,
Achana F,
Troughton J.
et al. A Mediterranean diet improves HbA1c but not fasting blood glucose compared
to alternative dietary strategies: a network meta-analysis. J Hum Nutr Diet 2014;
27: 280-297
MissingFormLabel
- 141
Emadian A,
Andrews RC,
England CY.
et al. The effect of macronutrients on glycaemic control: a systematic review of dietary
randomised controlled trials in overweight and obese adults with type 2 diabetes in
which there was no difference in weight loss between treatment groups. Br J Nutr 2015;
114: 1656-1666
MissingFormLabel
- 142
Kahleova H,
Salas-Salvadó J,
Rahelić D.
et al. Dietary Patterns and Cardiometabolic Outcomes in Diabetes: A Summary of Systematic
Reviews and Meta-Analyses. Nutrients 2019; 11: 2209
MissingFormLabel
- 143 Deutsche Diabetes Gesellschaft (DDG). Zugriff am 06. Juli 2021 unter: https://www.deutsche-diabetes-gesellschaft.de/fileadmin/user_upload/01_Die_DDG/03_Ausschuesse/02_Ernaehrung/2015-057-025l_S3_Diabetes_mellitus_Empfehlungen_Proteinzufuhr_2015-10.pdf
- 144
Pfeiffer AFH,
Pedersen E,
Schwab U.
et al. The Effects of Different Quantities and Qualities of Protein Intake in People
with Diabetes Mellitus. Nutrients 2020; 12: 365
MissingFormLabel
- 145
Mittendorfer B,
Klein S,
Fontana L.
A word of caution against excessive protein intake. Nat Rev Endocrinol 2020; 16: 59-66
MissingFormLabel
- 146
Labonte CC,
Chevalier S,
Marliss EB.
et al. Effect of 10% dietary protein intake on whole body protein kinetics in type
2 diabetic adults. Clin Nutr 2015; 34: 1115-1121
MissingFormLabel
- 147
Markova M,
Hornemann S,
Sucher S.
et al. Rate of appearance of amino acids after a meal regulates insulin and glucagon
secretion in patients with type 2 diabetes: a randomized clinical trial. Am J Clin
Nutr 2018; 108: 279-291
MissingFormLabel
- 148
Volkert D.
Aktuelle ESPEN-Leitlinie Klinische Ernährung und Hydration in der Geriatrie. Dtsch
Med Wochenschr 2020; 145: 1306-1314
MissingFormLabel
- 149
Song M,
Fung TT,
Hu FB.
et al. Association of Animal and Plant Protein Intake With All-Cause and Cause-Specific
Mortality. JAMA Intern Med 2016; 176: 1453-1463
MissingFormLabel
- 150
Ye J,
Yu Q,
Mai W.
et al. Dietary protein intake and subsequent risk of type 2 diabetes: a dose-response
meta-analysis of prospective cohort studies. Acta Diabetol 2019; 56: 851-870
MissingFormLabel
- 151
Vernooij RWM,
Zeraatkar D,
Han MA.
et al. Patterns of Red and Processed Meat Consumption and Risk for Cardiometabolic
and Cancer Outcomes: A Systematic Review and Meta-analysis of Cohort Studies. Ann
Intern Med 2019; 171: 732-741
MissingFormLabel
- 152
Vogtschmidt YD,
Raben A,
Faber I.
et al. Is protein the forgotten ingredient: Effects of higher compared to lower protein
diets on cardiometabolic risk factors. A systematic review and meta-analysis of randomised
controlled trials. Atherosclerosis 2021; 328: 124-135
MissingFormLabel
- 153
Clifton PM,
Condo D,
Keogh JB.
Long term weight maintenance after advice to consume low carbohydrate, higher protein
diets--a systematic review and meta analysis. Nutr Metab Cardiovasc Dis 2014; 24:
224-235
MissingFormLabel
- 154
Hahn D,
Hodson EM,
Fouque D.
Low protein diets for non-diabetic adults with chronic kidney disease. Cochrane Database
Syst Rev 2020; 10: CD001892
MissingFormLabel
- 155
Ikizler TA,
Burrowes JD,
Byham-Gray LD.
et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am J Kidney
Dis 2020; 76: S1-S107
MissingFormLabel
- 156
Menon V,
Kopple JD,
Wang X.
et al. Effect of a very low-protein diet on outcomes: long-term follow-up of the Modification
of Diet in Renal Disease (MDRD) Study. Am J Kidney Dis 2009; 53: 208-217
MissingFormLabel
- 157 Jiang Z. Effect of restricted protein diet supplemented with keto analogues in end-stage renal disease: a systematic review and meta-analysis. International urology and nephrology 2017; 1-8
- 158
Fiaccadori E,
Sabatino A,
Barazzoni R.
et al. ESPEN guideline on clinical nutrition in hospitalized patients with acute or
chronic kidney disease. Clin Nutr 2021; 40: 1644-1668
MissingFormLabel
- 159
Dong JY,
Zhang ZL,
Wang PY.
et al. Effects of high-protein diets on body weight, glycaemic control, blood lipids
and blood pressure in type 2 diabetes: meta-analysis of randomised controlled trials.
Br J Nutr 2013; 110: 781-789
MissingFormLabel
- 160
[Anonymous].
Carbohydrates in human nutrition. Report of a Joint FAO/WHO Expert Consultation. FAO
Food Nutr Pap 1998; 66: 1-140
MissingFormLabel
- 161
Wolever TMS.
Personalized nutrition by prediction of glycaemic responses: fact or fantasy?. Eur
J Clin Nutr 2016; 70: 411-413
MissingFormLabel
- 162
Berry SE,
Valdes AM,
Drew DA.
et al. Human postprandial responses to food and potential for precision nutrition.
Nat Med 2020; 26: 964-973
MissingFormLabel
- 163
Zeevi D,
Korem T,
Zmora N.
et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell 2015; 163:
1079-1094
MissingFormLabel
- 164 Jung CH, Choi KM. Impact of High-Carbohydrate Diet on Metabolic Parameters in Patients with Type 2 Diabetes. Nutrients 2017; 9: 322
- 165
Livesey G,
Taylor R,
Livesey H.
et al. Is there a dose-response relation of dietary glycemic load to risk of type
2 diabetes? Meta-analysis of prospective cohort studies. Am J Clin Nutr 2013; 97:
584-596
MissingFormLabel
- 166
Livesey G,
Livesey H.
Coronary Heart Disease and Dietary Carbohydrate, Glycemic Index, and Glycemic Load:
Dose-Response Meta-analyses of Prospective Cohort Studies. Mayo Clin Proc Innov Qual
Outcomes 2019; 3: 52-69
MissingFormLabel
- 167
Thomas DE,
Elliott EJ.
The use of low-glycaemic index diets in diabetes control. Br J Nutr 2010; 104: 797-802
MissingFormLabel
- 168
Xu B,
Fu J,
Qiao Y.
et al. Higher intake of microbiota-accessible carbohydrates and improved cardiometabolic
risk factors: a meta-analysis and umbrella review of dietary management in patients
with type 2 diabetes. Am J Clin Nutr 2021; 113: 1515-1530
MissingFormLabel
- 169
Jenkins DJA,
Kendall CWC,
McKeown-Eyssen G.
et al. Effect of a low-glycemic index or a high-cereal fiber diet on type 2 diabetes:
a randomized trial. JAMA 2008; 300: 2742-2753
MissingFormLabel
- 170
Holub I,
Gostner A,
Hessdörfer S.
et al. Improved metabolic control after 12-week dietary intervention with low glycaemic
isomalt in patients with type 2 diabetes mellitus. Horm Metab Res 2009; 41: 886-892
MissingFormLabel
- 171
Brand-Miller J,
Hayne S,
Petocz P.
et al. Low-glycemic index diets in the management of diabetes: a meta-analysis of
randomized controlled trials. Diabetes Care 2003; 26: 2261-2267
MissingFormLabel
- 172
Ojo O,
Ojo OO,
Adebowale F.
et al. The Effect of Dietary Glycaemic Index on Glycaemia in Patients with Type 2
Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients
2018; 10: 373
MissingFormLabel
- 173
Franz MJ,
MacLeod J,
Evert A.
et al. Academy of Nutrition and Dietetics Nutrition Practice Guideline for Type 1
and Type 2 Diabetes in Adults: Systematic Review of Evidence for Medical Nutrition
Therapy Effectiveness and Recommendations for Integration into the Nutrition Care
Process. J Acad Nutr Diet 2017; 117: 1659-1679
MissingFormLabel
- 174
Vega-López S,
Venn BJ,
Slavin JL.
Relevance of the Glycemic Index and Glycemic Load for Body Weight, Diabetes, and Cardiovascular
Disease. Nutrients 2018; 10: 1361
MissingFormLabel
- 175
Jenkins DJA,
Dehghan M,
Mente A.
et al. Glycemic Index, Glycemic Load, and Cardiovascular Disease and Mortality. N
Engl J Med 2021; 384: 1312-1322
MissingFormLabel
- 176
Coutinho M,
Gerstein HC,
Wang Y.
et al. The relationship between glucose and incident cardiovascular events. A metaregression
analysis of published data from 20 studies of 95783 individuals followed for 12.4 years.
Diabetes Care 1999; 22: 233-240
MissingFormLabel
- 177
Levitan EB,
Song Y,
Ford ES.
et al. Is nondiabetic hyperglycemia a risk factor for cardiovascular disease? A meta-analysis
of prospective studies. Arch Intern Med 2004; 164: 2147-2155
MissingFormLabel
- 178
Siri PW,
Krauss RM.
Influence of dietary carbohydrate and fat on LDL and HDL particle distributions. Curr
Atheroscler Rep 2005; 7: 455-459
MissingFormLabel
- 179
Aune D,
Norat T,
Romundstad P.
et al. Whole grain and refined grain consumption and the risk of type 2 diabetes:
a systematic review and dose-response meta-analysis of cohort studies. Eur J Epidemiol
2013; 28: 845-858
MissingFormLabel
- 180
InterAct Consortium.
Dietary fibre and incidence of type 2 diabetes in eight European countries: the EPIC-InterAct
Study and a meta-analysis of prospective studies. Diabetologia 2015; 58: 1394-1408
MissingFormLabel
- 181
Kim Y,
Je Y.
Dietary fibre intake and mortality from cardiovascular disease and all cancers: A
meta-analysis of prospective cohort studies. Arch Cardiovasc Dis 2016; 109: 39-54
MissingFormLabel
- 182
Reynolds AN,
Akerman AP,
Mann J.
Dietary fibre and whole grains in diabetes management: Systematic review and meta-analyses.
PLoS Med 2020; 17: e1003053
MissingFormLabel
- 183
Da Silva Borges D,
Fernandes R,
Thives Mello A.
et al. Prebiotics may reduce serum concentrations of C-reactive protein and ghrelin
in overweight and obese adults: a systematic review and meta-analysis. Nutr Rev 2020;
78: 235-248
MissingFormLabel
- 184
Reynolds A,
Mann J,
Cummings J.
et al. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses.
Lancet 2019; 393: 434-445
MissingFormLabel
- 185
Musa-Veloso K,
Poon T,
Harkness LS.
et al. The effects of whole-grain compared with refined wheat, rice, and rye on the
postprandial blood glucose response: a systematic review and meta-analysis of randomized
controlled trials. Am J Clin Nutr 2018; 108: 759-774
MissingFormLabel
- 186
Wang W,
Li J,
Chen X.
et al. Whole grain food diet slightly reduces cardiovascular risks in obese/overweight
adults: a systematic review and meta-analysis. BMC Cardiovasc Disord 2020; 20: 82
MissingFormLabel
- 187
Weickert MO,
Roden M,
Isken F.
et al. Effects of supplemented isoenergetic diets differing in cereal fiber and protein
content on insulin sensitivity in overweight humans. Am J Clin Nutr 2011; 94: 459-471
MissingFormLabel
- 188
Honsek C,
Kabisch S,
Kemper M.
et al. Fibre supplementation for the prevention of type 2 diabetes and improvement
of glucose metabolism: the randomised controlled Optimal Fibre Trial (OptiFiT). Diabetologia
2018; 61: 1295-1305
MissingFormLabel
- 189
Kabisch S,
Meyer NMT,
Honsek C.
et al. Fasting Glucose State Determines Metabolic Response to Supplementation with
Insoluble Cereal Fibre: A Secondary Analysis of the Optimal Fibre Trial (OptiFiT).
Nutrients 2019; 11: 2385
MissingFormLabel
- 190
Hjorth MF,
Ritz C,
Blaak EE.
et al. Pretreatment fasting plasma glucose and insulin modify dietary weight loss
success: results from 3 randomized clinical trials. Am J Clin Nutr 2017; 106: 499-505
MissingFormLabel
- 191
Xiao Z,
Chen H,
Zhang Y.
et al. The effect of psyllium consumption on weight, body mass index, lipid profile,
and glucose metabolism in diabetic patients: A systematic review and dose-response
meta-analysis of randomized controlled trials. Phytother Res 2020; 34: 1237-1247
MissingFormLabel
- 192
Wang L,
Yang H,
Huang H.
et al. Inulin-type fructans supplementation improves glycemic control for the prediabetes
and type 2 diabetes populations: results from a GRADE-assessed systematic review and
dose-response meta-analysis of 33 randomized controlled trials. J Transl Med 2019;
17: 410
MissingFormLabel
- 193
Rao M,
Gao C,
Xu L.
et al. Effect of Inulin-Type Carbohydrates on Insulin Resistance in Patients with
Type 2 Diabetes and Obesity: A Systematic Review and Meta-Analysis. J Diabetes Res
2019; 2019: 5101423
MissingFormLabel
- 194
Darooghegi Mofrad M,
Mozaffari H,
Mousavi SM.
et al. The effects of psyllium supplementation on body weight, body mass index and
waist circumference in adults: A systematic review and dose-response meta-analysis
of randomized controlled trials. Crit Rev Food Sci Nutr 2020; 60: 859-872
MissingFormLabel
- 195
Rahmani J,
Miri A,
Černevičiūtė R.
et al. Effects of cereal beta-glucan consumption on body weight, body mass index,
waist circumference and total energy intake: A meta-analysis of randomized controlled
trials. Complement Ther Med 2019; 43: 131-139
MissingFormLabel
- 196
Ho HVT,
Sievenpiper JL,
Zurbau A.
et al. The effect of oat β-glucan on LDL-cholesterol, non-HDL-cholesterol and apoB
for CVD risk reduction: a systematic review and meta-analysis of randomised-controlled
trials. Br J Nutr 2016; 116: 1369-1382
MissingFormLabel
- 197
Jovanovski E,
Yashpal S,
Komishon A.
et al. Effect of psyllium (Plantago ovata) fiber on LDL cholesterol and alternative
lipid targets, non-HDL cholesterol and apolipoprotein B: a systematic review and meta-analysis
of randomized controlled trials. Am J Clin Nutr 2018; 108: 922-932
MissingFormLabel
- 198
Brum J,
Ramsey D,
McRorie J.
et al. Meta-Analysis of Usefulness of Psyllium Fiber as Adjuvant Antilipid Therapy
to Enhance Cholesterol Lowering Efficacy of Statins. Am J Cardiol 2018; 122: 1169-1174
MissingFormLabel
- 199
Ho HVT,
Jovanovski E,
Zurbau A.
et al. A systematic review and meta-analysis of randomized controlled trials of the
effect of konjac glucomannan, a viscous soluble fiber, on LDL cholesterol and the
new lipid targets non-HDL cholesterol and apolipoprotein B. Am J Clin Nutr 2017; 105:
1239-1247
MissingFormLabel
- 200
Pittler MH,
Ernst E.
Guar gum for body weight reduction: meta-analysis of randomized trials. Am J Med 2001;
110: 724-730
MissingFormLabel
- 201
Khan K,
Jovanovski E,
Ho HVT.
et al. The effect of viscous soluble fiber on blood pressure: A systematic review
and meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis 2018;
28: 3-13
MissingFormLabel
- 202
Thinggaard M,
Jacobsen R,
Jeune B.
et al. Is the relationship between BMI and mortality increasingly U-shaped with advancing
age? A 10-year follow-up of persons aged 70-95 years. J Gerontol A Biol Sci Med Sci
2010; 65: 526-531
MissingFormLabel
- 203
Guigoz Y,
Vellas B.
Malnutrition in the elderly: the Mini Nutritional Assessment (MNA). Ther Umsch 1997;
54: 345-350
MissingFormLabel
- 204
Rubenstein LZ,
Harker JO,
Salvà A.
et al. Screening for undernutrition in geriatric practice: developing the short-form
mini-nutritional assessment (MNA-SF). J Gerontol A Biol Sci Med Sci 2001; 56: M366-M372
MissingFormLabel
- 205 [Anonym]. S2k-Leitlinie Diagnostik, Therapie und Verlaufskontrolle des Diabetes mellitus im Alter. 2. Auflage 2018 – AWMF-Register-Nr. 057-017. Diabetologie 2018; 13: 423-489
- 206
Volkert D,
Bauer J,
Frühwald T.
et al. S3-Leitlinie der Deutschen Gesellschaft für Ernährungsmedizin (DGEM) in Zusammenarbeit
mit der GESKES, der AKE und der DGG Klinische Ernährung in der Geriatrie. Aktuelle
Ernährungsmedizin 2013; 38: e1-e48
MissingFormLabel
- 207 Zeyfang A, Wernecke J, Bahrmann A. Diabetes mellitus im Alter. Diabetologie 2020; 15: S112-S119
- 208 Şat S, Aydınkoç-Tuzcu K, Berger F. et al. Diabetes und Migration. Diabetologie 2019; 14 (Suppl. 02) S306-S317
- 209
Diker O,
Deniz T,
Çetinkaya A.
History of Turkish Cuisine Culture and the Influence of the Balkans. IOSR Journal
of Humanities And Social Science 2016; 10: 1-6
MissingFormLabel
- 210 Schmid B. Ernährung und Migration [Zugl.: München, Techn. Univ., Diss., 2003]. München: Utz, Wiss; c; 2003
- 211 Magni P, Bier DM, Pecorelli S. et al. Perspective: Improving Nutritional Guidelines for Sustainable Health Policies: Current Status and Perspectives. Adv Nutr 2017; 8: 532-545
- 212 Praxistool zur Ernährung. Orientierungshilfe für die Diabetesberatung nach geografischen Räumen. Zugriff am 15. Juli 2021 unter: https://migration.deutsche-diabetes-gesellschaft.de/fileadmin/user_upload/01_Die_DDG/05_Arbeitsgemeinschaften/AG_Migranten/Microsite/200417_Ernaehrungstoo_DDG-GB19-Einleger_04.pdf
- 213 European Commission. Health Promotion and Disease Prevention Knowledge Gateway: Sugars and Sweeteners. Zugriff am 27. Januar 2021 unter: https://ec.europa.eu/jrc/en/health-knowledge-gateway/promotion-prevention/nutrition/sugars-sweeteners
- 214 Scientific Advisory Committee on Nutrition. Carbohydrates and Health report, 2015. Zugriff am 26. Januar 2021 unter: https://www.gov.uk/government/publications/
- 215
McKeown NM,
Dashti HS,
Ma J.
et al. Sugar-sweetened beverage intake associations with fasting glucose and insulin
concentrations are not modified by selected genetic variants in a ChREBP-FGF21 pathway:
a meta-analysis. Diabetologia 2018; 61: 317-330
MissingFormLabel
- 216
Evans RA,
Frese M,
Romero J.
et al. Chronic fructose substitution for glucose or sucrose in food or beverages has
little effect on fasting blood glucose, insulin, or triglycerides: a systematic review
and meta-analysis. Am J Clin Nutr 2017; 106: 519-529
MissingFormLabel
- 217
Evans RA,
Frese M,
Romero J.
et al. Fructose replacement of glucose or sucrose in food or beverages lowers postprandial
glucose and insulin without raising triglycerides: a systematic review and meta-analysis.
Am J Clin Nutr 2017; 106: 506-518
MissingFormLabel
- 218
Keller A,
Heitmann BL,
Olsen N.
Sugar-sweetened beverages, vascular risk factors and events: a systematic literature
review. Public Health Nutr 2015; 18: 1145-1154
MissingFormLabel
- 219
Huang C,
Huang J,
Tian Y.
et al. Sugar sweetened beverages consumption and risk of coronary heart disease: a
meta-analysis of prospective studies. Atherosclerosis 2014; 234: 11-16
MissingFormLabel
- 220
Narain A,
Kwok CS,
Mamas MA.
Soft drinks and sweetened beverages and the risk of cardiovascular disease and mortality:
a systematic review and meta-analysis. Int J Clin Pract 2016; 70: 791-805
MissingFormLabel
- 221
Cheungpasitporn W,
Thongprayoon C,
O’Corragain OA.
et al. Associations of sugar-sweetened and artificially sweetened soda with chronic
kidney disease: a systematic review and meta-analysis. Nephrology (Carlton) 2014;
19: 791-797
MissingFormLabel
- 222
Chen H,
Wang J,
Li Z.
et al. Consumption of Sugar-Sweetened Beverages Has a Dose-Dependent Effect on the
Risk of Non-Alcoholic Fatty Liver Disease: An Updated Systematic Review and Dose-Response
Meta-Analysis. Int J Environ Res Public Health 2019; 16: 2192
MissingFormLabel
- 223
Asgari-Taee F,
Zerafati-Shoae N,
Dehghani M.
et al. Association of sugar sweetened beverages consumption with non-alcoholic fatty
liver disease: a systematic review and meta-analysis. Eur J Nutr 2019; 58: 1759-1769
MissingFormLabel
- 224
Khan TA,
Sievenpiper JL.
Controversies about sugars: results from systematic reviews and meta-analyses on obesity,
cardiometabolic disease and diabetes. Eur J Nutr 2016; 55: 25-43
MissingFormLabel
- 225
Choo VL,
Viguiliouk E,
Blanco Mejia S.
et al. Food sources of fructose-containing sugars and glycaemic control: systematic
review and meta-analysis of controlled intervention studies. BMJ 2018; 363: k4644
MissingFormLabel
- 226
Semnani-Azad Z,
Khan TA,
Blanco Mejia S.
et al. Association of Major Food Sources of Fructose-Containing Sugars With Incident
Metabolic Syndrome: A Systematic Review and Meta-analysis. JAMA Netw Open 2020; 3:
e209993
MissingFormLabel
- 227 Bechthold A. Vollwertig essen und trinken nach den 10 Regeln der DGE. Bonn: Deutsche Gesellschaft für Ernährung e. V.. (DGE); 2018
- 228
Wu H,
Flint AJ,
Qi Q.
et al. Association between dietary whole grain intake and risk of mortality: two large
prospective studies in US men and women. JAMA Intern Med 2015; 175: 373-384
MissingFormLabel
- 229
Johnsen NF,
Frederiksen K,
Christensen J.
et al. Whole-grain products and whole-grain types are associated with lower all-cause
and cause-specific mortality in the Scandinavian HELGA cohort. Br J Nutr 2015; 114:
608-623
MissingFormLabel
- 230
Wei H,
Gao Z,
Liang R.
et al. Whole-grain consumption and the risk of all-cause, CVD and cancer mortality:
a meta-analysis of prospective cohort studies – CORRIGENDUM. Br J Nutr 2016; 116:
952
MissingFormLabel
- 231
Chen GC,
Tong X,
Xu JY.
et al. Whole-grain intake and total, cardiovascular, and cancer mortality: a systematic
review and meta-analysis of prospective studies. Am J Clin Nutr 2016; 104: 164-172
MissingFormLabel
- 232
Benisi-Kohansal S,
Saneei P,
Salehi-Marzijarani M.
et al. Whole-Grain Intake and Mortality from All Causes, Cardiovascular Disease, and
Cancer: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort
Studies. Adv Nutr 2016; 7: 1052-1065
MissingFormLabel
- 233
Zong G,
Gao A,
Hu FB.
et al. Whole Grain Intake and Mortality From All Causes, Cardiovascular Disease, and
Cancer: A Meta-Analysis of Prospective Cohort Studies. Circulation 2016; 133: 2370-2380
MissingFormLabel
- 234
Aune D,
Keum N,
Giovannucci E.
et al. Whole grain consumption and risk of cardiovascular disease, cancer, and all
cause and cause specific mortality: systematic review and dose-response meta-analysis
of prospective studies. BMJ 2016; 353: i2716
MissingFormLabel
- 235
Aune D.
Plant Foods, Antioxidant Biomarkers, and the Risk of Cardiovascular Disease, Cancer,
and Mortality: A Review of the Evidence. Adv Nutr 2019; 10: S404-S421
MissingFormLabel
- 236
Zhang B,
Zhao Q,
Guo W.
et al. Association of whole grain intake with all-cause, cardiovascular, and cancer
mortality: a systematic review and dose-response meta-analysis from prospective cohort
studies. Eur J Clin Nutr 2018; 72: 57-65
MissingFormLabel
- 237
Jenkins DJ,
Wesson V,
Wolever TM.
et al. Wholemeal versus wholegrain breads: proportion of whole or cracked grain and
the glycaemic response. BMJ 1988; 297: 958-960
MissingFormLabel
- 238
Reynolds AN,
Mann J,
Elbalshy M.
et al. Wholegrain Particle Size Influences Postprandial Glycemia in Type 2 Diabetes:
A Randomized Crossover Study Comparing Four Wholegrain Breads. Diabetes Care 2020;
43: 476-479
MissingFormLabel
- 239
Åberg S,
Mann J,
Neumann S.
et al. Whole-Grain Processing and Glycemic Control in Type 2 Diabetes: A Randomized
Crossover Trial. Diabetes Care 2020; 43: 1717-1723
MissingFormLabel
- 240
Jenkins DJA,
Kendall CWC,
Augustin LSA.
et al. Effect of wheat bran on glycemic control and risk factors for cardiovascular
disease in type 2 diabetes. Diabetes Care 2002; 25: 1522-1528
MissingFormLabel
- 241
Miller V,
Mente A,
Dehghan M.
et al. Fruit, vegetable, and legume intake, and cardiovascular disease and deaths
in 18 countries (PURE): a prospective cohort study. Lancet 2017; 390: 2037-2049
MissingFormLabel
- 242
Aune D,
Giovannucci E,
Boffetta P.
et al. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer
and all-cause mortality-a systematic review and dose-response meta-analysis of prospective
studies. Int J Epidemiol 2017; 46: 1029-1056
MissingFormLabel
- 243
Bechthold A,
Boeing H,
Schwedhelm C.
et al. Food groups and risk of coronary heart disease, stroke and heart failure: A
systematic review and dose-response meta-analysis of prospective studies. Crit Rev
Food Sci Nutr 2019; 59: 1071-1090
MissingFormLabel
- 244
Zhan J,
Liu YJ,
Cai LB.
et al. Fruit and vegetable consumption and risk of cardiovascular disease: A meta-analysis
of prospective cohort studies. Crit Rev Food Sci Nutr 2017; 57: 1650-1663
MissingFormLabel
- 245
Willett W,
Rockström J,
Loken B.
et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable
food systems. Lancet 2019; 393: 447-492
MissingFormLabel
- 246
Barnard ND,
Cohen J,
Jenkins DJA.
et al. A low-fat vegan diet improves glycemic control and cardiovascular risk factors
in a randomized clinical trial in individuals with type 2 diabetes. Diabetes Care
2006; 29: 1777-1783
MissingFormLabel
- 247
Jenkins DJA,
Kendall CWC,
Augustin LSA.
et al. Effect of legumes as part of a low glycemic index diet on glycemic control
and cardiovascular risk factors in type 2 diabetes mellitus: a randomized controlled
trial. Arch Intern Med 2012; 172: 1653-1660
MissingFormLabel
- 248
Renner B,
Arens-Azevêdo U,
Watzl B.
et al. DGE-Positionspapier zur nachhaltigeren Ernährung. Ernährungsumschau 2021; 68:
144-154
MissingFormLabel
- 249
Jannasch F,
Kröger J,
Schulze MB.
Dietary Patterns and Type 2 Diabetes: A Systematic Literature Review and Meta-Analysis
of Prospective Studies. J Nutr 2017; 147: 1174-1182
MissingFormLabel
- 250
Wallin A,
Di Giuseppe D,
Orsini N.
et al. Fish consumption, dietary long-chain n-3 fatty acids, and risk of type 2 diabetes:
systematic review and meta-analysis of prospective studies. Diabetes Care 2012; 35:
918-929
MissingFormLabel
- 251
Xun P,
He K.
Fish Consumption and Incidence of Diabetes: meta-analysis of data from 438000 individuals
in 12 independent prospective cohorts with an average 11-year follow-up. Diabetes
Care 2012; 35: 930-938
MissingFormLabel
- 252
Schwingshackl L,
Hoffmann G,
Lampousi AM.
et al. Food groups and risk of type 2 diabetes mellitus: a systematic review and meta-analysis
of prospective studies. Eur J Epidemiol 2017; 32: 363-375
MissingFormLabel
- 253
Muley A,
Muley P,
Shah M.
ALA, fatty fish or marine n-3 fatty acids for preventing DM?: a systematic review
and meta-analysis. Curr Diabetes Rev 2014; 10: 158-165
MissingFormLabel
- 254
Schlesinger S,
Neuenschwander M,
Schwedhelm C.
et al. Food Groups and Risk of Overweight, Obesity, and Weight Gain: A Systematic
Review and Dose-Response Meta-Analysis of Prospective Studies. Adv Nutr 2019; 10:
205-218
MissingFormLabel
- 255
Micha R,
Shulkin ML,
Peñalvo JL.
et al. Etiologic effects and optimal intakes of foods and nutrients for risk of cardiovascular
diseases and diabetes: Systematic reviews and meta-analyses from the Nutrition and
Chronic Diseases Expert Group (NutriCoDE). PLoS One 2017; 12: e0175149
MissingFormLabel
- 256
Jayedi A,
Shab-Bidar S,
Eimeri S.
et al. Fish consumption and risk of all-cause and cardiovascular mortality: a dose-response
meta-analysis of prospective observational studies. Public Health Nutr 2018; 21: 1297-1306
MissingFormLabel
- 257
Abdelhamid AS,
Brown TJ,
Brainard JS.
et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular
disease. Cochrane Database Syst Rev 2018; 11: CD003177
MissingFormLabel
- 258
Hu Y,
Hu FB,
Manson JE.
Marine Omega-3 Supplementation and Cardiovascular Disease: An Updated Meta-Analysis
of 13 Randomized Controlled Trials Involving 127 477 Participants. J Am Heart Assoc
2019; 8: e013543
MissingFormLabel
- 259
Gao H,
Geng T,
Huang T.
et al. Fish oil supplementation and insulin sensitivity: a systematic review and meta-analysis.
Lipids Health Dis 2017; 16: 131
MissingFormLabel
- 260
Chen C,
Yu X,
Shao S.
Effects of Omega-3 Fatty Acid Supplementation on Glucose Control and Lipid Levels
in Type 2 Diabetes: A Meta-Analysis. PLoS One 2015; 10: e0139565
MissingFormLabel
- 261 DGE – Deutsche Gesellschaft für Ernährung. Vollwertig essen und trinken nach den 10 Regeln der DGE. Zugriff am 13. Juli 2021 unter: https://www.dge.de/ernaehrungspraxis/vollwertige-ernaehrung/10-regeln-der-dge/
- 262
Zeraatkar D,
Han MA,
Guyatt GH.
et al. Red and Processed Meat Consumption and Risk for All-Cause Mortality and Cardiometabolic
Outcomes: A Systematic Review and Meta-analysis of Cohort Studies. Ann Intern Med
2019; 171: 703-710
MissingFormLabel
- 263
Davidson MH,
Hunninghake D,
Maki KC.
et al. Comparison of the effects of lean red meat vs lean white meat on serum lipid
levels among free-living persons with hypercholesterolemia: a long-term, randomized
clinical trial. Arch Intern Med 1999; 159: 1331-1338
MissingFormLabel
- 264
Hunninghake DB,
Maki KC,
Kwiterovich PO.
et al. Incorporation of lean red meat into a National Cholesterol Education Program
Step I diet: a long-term, randomized clinical trial in free-living persons with hypercholesterolemia.
J Am Coll Nutr 2000; 19: 351-360
MissingFormLabel
- 265
Bergeron N,
Chiu S,
Williams PT.
et al. Effects of red meat, white meat, and nonmeat protein sources on atherogenic
lipoprotein measures in the context of low compared with high saturated fat intake:
a randomized controlled trial. Am J Clin Nutr 2019; 110: 24-33
MissingFormLabel
- 266
Charlton K,
Walton K,
Batterham M.
et al. Pork and Chicken Meals Similarly Impact on Cognitive Function and Strength
in Community-Living Older Adults: A Pilot Study. J Nutr Gerontol Geriatr 2016; 35:
124-145
MissingFormLabel
- 267
Murphy KJ,
Parker B,
Dyer KA.
et al. A comparison of regular consumption of fresh lean pork, beef and chicken on
body composition: a randomized cross-over trial. Nutrients 2014; 6: 682-696
MissingFormLabel
- 268
Murphy KJ,
Thomson RL,
Coates AM.
et al. Effects of eating fresh lean pork on cardiometabolic health parameters. Nutrients
2012; 4: 711-723
MissingFormLabel
- 269
Johnston BC,
Zeraatkar D,
Han MA.
et al. Unprocessed Red Meat and Processed Meat Consumption: Dietary Guideline Recommendations
From the Nutritional Recommendations (NutriRECS) Consortium. Ann Intern Med 2019;
171: 756-764
MissingFormLabel
- 270
Davis PA,
Yokoyama W.
Cinnamon intake lowers fasting blood glucose: meta-analysis. J Med Food 2011; 14:
884-889
MissingFormLabel
- 271
Akilen R,
Tsiami A,
Devendra D.
et al. Cinnamon in glycaemic control: Systematic review and meta analysis. Clin Nutr
2012; 31: 609-615
MissingFormLabel
- 272 Leach MJ, Kumar S. Cinnamon for diabetes mellitus. Cochrane Database Syst Rev 2012; CD007170
- 273
Allen RW,
Schwartzman E,
Baker WL.
et al. Cinnamon use in type 2 diabetes: an updated systematic review and meta-analysis.
Ann Fam Med 2013; 11: 452-459
MissingFormLabel
- 274
Costello RB,
Dwyer JT,
Saldanha L.
et al. Do Cinnamon Supplements Have a Role in Glycemic Control in Type 2 Diabetes?
A Narrative Review. J Acad Nutr Diet 2016; 116: 1794-1802
MissingFormLabel
- 275
Sierra-Puente D,
Abadi-Alfie S,
Arakanchi-Altaled K.
et al. Cinammon (Cinnamomum Spp.) and Type 2 Diabetes Mellitus. CTNR 2019; 18: 247-255
MissingFormLabel
- 276
Chan CB,
Hashemi Z,
Subhan FB.
The impact of low and no-caloric sweeteners on glucose absorption, incretin secretion,
and glucose tolerance. Appl Physiol Nutr Metab 2017; 42: 793-801
MissingFormLabel
- 277
Brown AW,
Bohan Brown MM,
Onken KL.
et al. Short-term consumption of sucralose, a nonnutritive sweetener, is similar to
water with regard to select markers of hunger signaling and short-term glucose homeostasis
in women. Nutr Res 2011; 31: 882-888
MissingFormLabel
- 278
Ford HE,
Peters V,
Martin NM.
et al. Effects of oral ingestion of sucralose on gut hormone response and appetite
in healthy normal-weight subjects. Eur J Clin Nutr 2011; 65: 508-513
MissingFormLabel
- 279
Steinert RE,
Frey F,
Töpfer A.
et al. Effects of carbohydrate sugars and artificial sweeteners on appetite and the
secretion of gastrointestinal satiety peptides. Br J Nutr 2011; 105: 1320-1328
MissingFormLabel
- 280
Barriocanal LA,
Palacios M,
Benitez G.
et al. Apparent lack of pharmacological effect of steviol glycosides used as sweeteners
in humans. A pilot study of repeated exposures in some normotensive and hypotensive
individuals and in Type 1 and Type 2 diabetics. Regul Toxicol Pharmacol 2008; 51:
37-41
MissingFormLabel
- 281
Brown RJ,
Walter M,
Rother KI.
Effects of diet soda on gut hormones in youths with diabetes. Diabetes Care 2012;
35: 959-964
MissingFormLabel
- 282
Grotz VL,
Henry RR,
McGill JB.
et al. Lack of effect of sucralose on glucose homeostasis in subjects with type 2
diabetes. J Am Diet Assoc 2003; 103: 1607-1612
MissingFormLabel
- 283
Maki KC,
Curry LL,
Reeves MS.
et al. Chronic consumption of rebaudioside A, a steviol glycoside, in men and women
with type 2 diabetes mellitus. Food Chem Toxicol 2008; 46 (Suppl. 07) S47-53
MissingFormLabel
- 284
Olalde-Mendoza L,
Moreno-González YE.
Modificación de la glucemia en ayuno en adultos con diabetes mellitus tipo 2 después
de la ingesta de refrescos de cola y de dieta en el estado de querétaro, México. Arch
Latinoam Nutr 2013; 63: 142-147
MissingFormLabel
- 285
Temizkan S,
Deyneli O,
Yasar M.
et al. Sucralose enhances GLP-1 release and lowers blood glucose in the presence of
carbohydrate in healthy subjects but not in patients with type 2 diabetes. Eur J Clin
Nutr 2015; 69: 162-166
MissingFormLabel
- 286
Ferrazzano GF,
Cantile T,
Alcidi B.
et al. Is Stevia rebaudiana Bertoni a Non Cariogenic Sweetener? A Review. Molecules
2015; 21: E38
MissingFormLabel
- 287
Prashant GM,
Patil RB,
Nagaraj T.
et al. The antimicrobial activity of the three commercially available intense sweeteners
against common periodontal pathogens: an in vitro study. J Contemp Dent Pract 2012;
13: 749-752
MissingFormLabel
- 288
Suez J,
Korem T,
Zeevi D.
et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota.
Nature 2014; 514: 181-186
MissingFormLabel
- 289 EFSA 2013. EFSA schließt vollständige Risikobewertung zu Aspartam ab und kommt zu dem Schluss, dass es in den derzeitigen Expositionsmengen sicher ist. Zugriff am 01. September 2020 unter: https://www.efsa.europa.eu/de/press/news/131210
- 290 Bundesinstitut für Risikobewertung. Bewertung von Süßstoffen und Zuckeraustauschstoffen. Hintergrundinformation Nr. 025/2014 des BfR vom 1. Juli 2014. Zugriff am 01. September 2020 unter: www.bfr.bund.de/cm/343/bewertung_von_suessstoffen.pdf
- 291
Bock PM,
Telo GH,
Ramalho R.
et al. The effect of probiotics, prebiotics or synbiotics on metabolic outcomes in
individuals with diabetes: a systematic review and meta-analysis. Diabetologia 2021;
64: 26-41
MissingFormLabel
- 292
Rittiphairoj T,
Pongpirul K,
Janchot K.
et al. Probiotics Contribute to Glycemic Control in Patients with Type 2 Diabetes
Mellitus: A Systematic Review and Meta-Analysis. Adv Nutr 2021; 12: 722-734
MissingFormLabel
- 293
Tao YW,
Gu YL,
Mao XQ.
et al. Effects of probiotics on type II diabetes mellitus: a meta-analysis. J Transl
Med 2020; 18: 30
MissingFormLabel
- 294
Ardeshirlarijani E,
Tabatabaei-Malazy O,
Mohseni S.
et al. Effect of probiotics supplementation on glucose and oxidative stress in type
2 diabetes mellitus: a meta-analysis of randomized trials. Daru 2019; 27: 827-837
MissingFormLabel
- 295
Mahboobi S,
Rahimi F,
Jafarnejad S.
Effects of Prebiotic and Synbiotic Supplementation on Glycaemia and Lipid Profile
in Type 2 Diabetes: A Meta-Analysis of Randomized Controlled Trials. Adv Pharm Bull
2018; 8: 565-574
MissingFormLabel
- 296
Akbari V,
Hendijani F.
Effects of probiotic supplementation in patients with type 2 diabetes: systematic
review and meta-analysis. Nutr Rev 2016; 74: 774-784
MissingFormLabel
- 297
Yao K,
Zeng L,
He Q.
et al. Effect of Probiotics on Glucose and Lipid Metabolism in Type 2 Diabetes Mellitus:
A Meta-Analysis of 12 Randomized Controlled Trials. Med Sci Monit 2017; 23: 3044-3053
MissingFormLabel
- 298
Wang C,
Zhang C,
Li S.
et al. Effects of Probiotic Supplementation on Dyslipidemia in Type 2 Diabetes Mellitus:
A Meta-Analysis of Randomized Controlled Trials. Foods 2020; 9: 1540
MissingFormLabel
- 299
Kasińska MA,
Drzewoski J.
Effectiveness of probiotics in type 2 diabetes: a meta-analysis. Pol Arch Med Wewn
2015; 125: 803-813
MissingFormLabel
- 300
Palacios T,
Vitetta L,
Coulson S.
et al. Targeting the Intestinal Microbiota to Prevent Type 2 Diabetes and Enhance
the Effect of Metformin on Glycaemia: A Randomised Controlled Pilot Study. Nutrients
2020; 12: 2041
MissingFormLabel
- 301
Zheng M,
Zhang R,
Tian X.
et al. Assessing the Risk of Probiotic Dietary Supplements in the Context of Antibiotic
Resistance. Front Microbiol 2017; 8: 908
MissingFormLabel
- 302
Wong A,
Ngu DYS,
Dan LA.
et al. Detection of antibiotic resistance in probiotics of dietary supplements. Nutr
J 2015; 14: 95
MissingFormLabel
- 303 BgVV – ehemals: Bundesinstitut für gesundheitlichen Verbraucherschutz und Veterinärmedizin. Abschlussbericht der Arbeitsgruppe „Probiotische Mikroorganismenkulturen in Lebensmitteln“ am BgVV. Zugriff am 13. Juli 2021 unter: https://mobil.bfr.bund.de/cm/343/probiot.pdf
- 304
de Vrese M.
Mikrobiologie, Wirkung und Sicherheit von Probiotika. Monatsschr Kinderheilkd 2008;
156: 1063-1069
MissingFormLabel
- 305
Vrieze A,
van Nood E,
Holleman F.
et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity
in individuals with metabolic syndrome. Gastroenterology 2012; 143: 913-916.e7
MissingFormLabel
- 306
Simon MC,
Strassburger K,
Nowotny B.
et al. Intake of Lactobacillus reuteri improves incretin and insulin secretion in
glucose-tolerant humans: a proof of concept. Diabetes Care 2015; 38: 1827-1834
MissingFormLabel
- 307
Tilg H,
Moschen AR.
Microbiota and diabetes: an evolving relationship. Gut 2014; 63: 1513-1521
MissingFormLabel
- 308
Kjems LL,
Holst JJ,
Vølund A.
et al. The influence of GLP-1 on glucose-stimulated insulin secretion: effects on
beta-cell sensitivity in type 2 and nondiabetic subjects. Diabetes 2003; 52: 380-386
MissingFormLabel
- 309
Karlsson FH,
Tremaroli V,
Nookaew I.
et al. Gut metagenome in European women with normal, impaired and diabetic glucose
control. Nature 2013; 498: 99-103
MissingFormLabel
- 310
Qin J,
Li Y,
Cai Z.
et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature
2012; 490: 55-60
MissingFormLabel
- 311
Larsen N,
Vogensen FK,
van den Berg FWJ.
et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic
adults. PLoS One 2010; 5: e9085
MissingFormLabel
- 312
Wu H,
Esteve E,
Tremaroli V.
et al. Metformin alters the gut microbiome of individuals with treatment-naive type
2 diabetes, contributing to the therapeutic effects of the drug. Nat Med 2017; 23:
850-858
MissingFormLabel
- 313
Forslund K,
Hildebrand F,
Nielsen T.
et al. Corrigendum: Disentangling type 2 diabetes and metformin treatment signatures
in the human gut microbiota. Nature 2017; 545: 116
MissingFormLabel
- 314
Forslund K,
Hildebrand F,
Nielsen T.
et al. Disentangling type 2 diabetes and metformin treatment signatures in the human
gut microbiota. Nature 2015; 528: 262-266
MissingFormLabel
- 315
Caesar R.
Pharmacologic and Nonpharmacologic Therapies for the Gut Microbiota in Type 2 Diabetes.
Can J Diabetes 2019; 43: 224-231
MissingFormLabel
- 316
Evert AB,
Boucher JL,
Cypress M.
et al. Nutrition therapy recommendations for the management of adults with diabetes.
Diabetes Care 2014; 37 (Suppl. 01) S120-S143
MissingFormLabel
- 317
Sievenpiper JL,
Chan CB,
Dworatzek PD.
et al. Nutrition Therapy. Can J Diabetes 2018; 42 (Suppl. 01) S64-S79
MissingFormLabel
- 318
Sievenpiper JL,
de Souza RJ,
Mirrahimi A.
et al. Effect of fructose on body weight in controlled feeding trials: a systematic
review and meta-analysis. Ann Intern Med 2012; 156: 291-304
MissingFormLabel
- 319
Ha V,
Sievenpiper JL,
de Souza RJ.
et al. Effect of fructose on blood pressure: a systematic review and meta-analysis
of controlled feeding trials. Hypertension 2012; 59: 787-795
MissingFormLabel
- 320
Chiavaroli L,
de Souza RJ,
Ha V.
et al. Effect of Fructose on Established Lipid Targets: A Systematic Review and Meta-Analysis
of Controlled Feeding Trials. J Am Heart Assoc 2015; 4: e001700
MissingFormLabel
- 321
Wang X,
Ouyang Y,
Liu J.
et al. Fruit and vegetable consumption and mortality from all causes, cardiovascular
disease, and cancer: systematic review and dose-response meta-analysis of prospective
cohort studies. BMJ 2014; 349: g4490
MissingFormLabel
- 322
Chiu S,
Sievenpiper JL,
de Souza RJ.
et al. Effect of fructose on markers of non-alcoholic fatty liver disease (NAFLD):
a systematic review and meta-analysis of controlled feeding trials. Eur J Clin Nutr
2014; 68: 416-423
MissingFormLabel
- 323
Wang DD,
Sievenpiper JL,
de Souza RJ.
et al. The effects of fructose intake on serum uric acid vary among controlled dietary
trials. J Nutr 2012; 142: 916-923
MissingFormLabel
- 324
Cozma AI,
Sievenpiper JL,
de Souza RJ.
et al. Effect of fructose on glycemic control in diabetes: a systematic review and
meta-analysis of controlled feeding trials. Diabetes Care 2012; 35: 1611-1620
MissingFormLabel
- 325
Sievenpiper JL,
Chiavaroli L,
de Souza RJ.
et al. ‘Catalytic’ doses of fructose may benefit glycaemic control without harming
cardiometabolic risk factors: a small meta-analysis of randomised controlled feeding
trials. Br J Nutr 2012; 108: 418-423
MissingFormLabel
- 326
Sievenpiper JL,
Carleton AJ,
Chatha S.
et al. Heterogeneous effects of fructose on blood lipids in individuals with type
2 diabetes: systematic review and meta-analysis of experimental trials in humans.
Diabetes Care 2009; 32: 1930-1937
MissingFormLabel
- 327
Chung M,
Ma J,
Patel K.
et al. Fructose, high-fructose corn syrup, sucrose, and nonalcoholic fatty liver disease
or indexes of liver health: a systematic review and meta-analysis. Am J Clin Nutr
2014; 100: 833-849
MissingFormLabel
- 328
Goran MI,
Ulijaszek SJ,
Ventura EE.
High fructose corn syrup and diabetes prevalence: a global perspective. Glob Public
Health 2013; 8: 55-64
MissingFormLabel
- 329
Tsilas CS,
de Souza RJ,
Mejia SB.
et al. Relation of total sugars, fructose and sucrose with incident type 2 diabetes:
a systematic review and meta-analysis of prospective cohort studies. CMAJ 2017; 189:
E711-E720
MissingFormLabel
- 330
David Wang D,
Sievenpiper JL,
de Souza RJ.
et al. Effect of fructose on postprandial triglycerides: a systematic review and meta-analysis
of controlled feeding trials. Atherosclerosis 2014; 232: 125-133
MissingFormLabel
- 331
Zhang YH,
An T,
Zhang RC.
et al. Very high fructose intake increases serum LDL-cholesterol and total cholesterol:
a meta-analysis of controlled feeding trials. J Nutr 2013; 143: 1391-1398
MissingFormLabel
- 332
Schwingshackl L,
Neuenschwander M,
Hoffmann G.
et al. Dietary sugars and cardiometabolic risk factors: a network meta-analysis on
isocaloric substitution interventions. Am J Clin Nutr 2020; 111: 187-196
MissingFormLabel
- 333
Weber KS,
Simon MC,
Strassburger K.
et al. Habitual Fructose Intake Relates to Insulin Sensitivity and Fatty Liver Index
in Recent-Onset Type 2 Diabetes Patients and Individuals without Diabetes. Nutrients
2018; 10: 774
MissingFormLabel
- 334
ter Horst KW,
Schene MR,
Holman R.
et al. Effect of fructose consumption on insulin sensitivity in nondiabetic subjects:
a systematic review and meta-analysis of diet-intervention trials. Am J Clin Nutr
2016; 104: 1562-1576
MissingFormLabel
- 335 Kulzer B, Albus C, Herpertz S. et al. Psychosoziales und Diabetes. Der Diabetologe 2019; 15: 452-469
- 336
Ahmed AT,
Karter AJ,
Warton EM.
et al. The relationship between alcohol consumption and glycemic control among patients
with diabetes: the Kaiser Permanente Northern California Diabetes Registry. J Gen
Intern Med 2008; 23: 275-282
MissingFormLabel
- 337
Bantle AE,
Thomas W,
Bantle JP.
Metabolic effects of alcohol in the form of wine in persons with type 2 diabetes mellitus.
Metabolism 2008; 57: 241-245
MissingFormLabel
- 338
Avogaro A,
Beltramello P,
Gnudi L.
et al. Alcohol intake impairs glucose counterregulation during acute insulin-induced
hypoglycemia in IDDM patients. Evidence for a critical role of free fatty acids. Diabetes
1993; 42: 1626-1634
MissingFormLabel
- 339
Turner BC,
Jenkins E,
Kerr D.
et al. The effect of evening alcohol consumption on next-morning glucose control in
type 1 diabetes. Diabetes Care 2001; 24: 1888-1893
MissingFormLabel
- 340
Richardson T,
Weiss M,
Thomas P.
et al. Day after the night before: influence of evening alcohol on risk of hypoglycemia
in patients with type 1 diabetes. Diabetes Care 2005; 28: 1801-1802
MissingFormLabel
- 341
Pedersen-Bjergaard U,
Reubsaet JLE,
Nielsen SL.
et al. Psychoactive drugs, alcohol, and severe hypoglycemia in insulin-treated diabetes:
analysis of 141 cases. Am J Med 2005; 118: 307-310
MissingFormLabel
- 342 Frier B, Fisher M, Hrsg. Moderators, monitoring and management of hypoglycaemia [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] . Chichester: John Wiley & Sons; 2007
- 343
Ahmed AT,
Karter AJ,
Liu J.
Alcohol consumption is inversely associated with adherence to diabetes self-care behaviours.
Diabet Med 2006; 23: 795-802
MissingFormLabel
- 344
Nahas R,
Goguen J.
Natural health products. Can J Diabetes 2013; 37 (Suppl. 01) S97-S99
MissingFormLabel
- 345 Hartweg J, Perera R, Montori V. et al. Omega-3 polyunsaturated fatty acids (PUFA) for type 2 diabetes mellitus. Cochrane Database Syst Rev 2008; CD003205
- 346
Hartweg J,
Farmer AJ,
Holman RR.
et al. Potenzial impact of omega-3 treatment on cardiovascular disease in type 2 diabetes.
Curr Opin Lipidol 2009; 20: 30-38
MissingFormLabel
- 347
O’Mahoney LL,
Matu J,
Price OJ.
et al. Omega-3 polyunsaturated fatty acids favourably modulate cardiometabolic biomarkers
in type 2 diabetes: a meta-analysis and meta-regression of randomized controlled trials.
Cardiovasc Diabetol 2018; 17: 98
MissingFormLabel
- 348
Mirhosseini N,
Vatanparast H,
Mazidi M.
et al. The Effect of Improved Serum 25-Hydroxyvitamin D Status on Glycemic Control
in Diabetic Patients: A Meta-Analysis. J Clin Endocrinol Metab 2017; 102: 3097-3110
MissingFormLabel
- 349
Li X,
Liu Y,
Zheng Y.
et al. The Effect of Vitamin D Supplementation on Glycemic Control in Type 2 Diabetes
Patients: A Systematic Review and Meta-Analysis. Nutrients 2018; 10: 375
MissingFormLabel
- 350
Jafari T,
Fallah AA,
Barani A.
Effects of vitamin D on serum lipid profile in patients with type 2 diabetes: A meta-analysis
of randomized controlled trials. Clin Nutr 2016; 35: 1259-1268
MissingFormLabel
- 351
Mousa A,
Naderpoor N,
Teede H.
et al. Vitamin D supplementation for improvement of chronic low-grade inflammation
in patients with type 2 diabetes: a systematic review and meta-analysis of randomized
controlled trials. Nutr Rev 2018; 76: 380-394
MissingFormLabel
- 352
Lee KJ,
Lee YJ.
Effects of vitamin D on blood pressure in patients with type 2 diabetes mellitus.
Int J Clin Pharmacol Ther 2016; 54: 233-242
MissingFormLabel
- 353
Yu Y,
Tian L,
Xiao Y.
et al. Effect of Vitamin D Supplementation on Some Inflammatory Biomarkers in Type
2 Diabetes Mellitus Subjects: A Systematic Review and Meta-Analysis of Randomized
Controlled Trials. Ann Nutr Metab 2018; 73: 62-73
MissingFormLabel
- 354
Verma H,
Garg R.
Effect of magnesium supplementation on type 2 diabetes associated cardiovascular risk
factors: a systematic review and meta-analysis. J Hum Nutr Diet 2017; 30: 621-633
MissingFormLabel
- 355 Asbaghi O, Moradi S, Kashkooli S. et al. The effects of oral magnesium supplementation on glycaemic control in patients with type 2 diabetes: a systematic review and dose-response meta-analysis of controlled clinical trials. Br J Nutr 2022; 1-10
- 356
Asbaghi O,
Hosseini R,
Boozari B.
et al. The Effects of Magnesium Supplementation on Blood Pressure and Obesity Measure
Among Type 2 Diabetes Patient: a Systematic Review and Meta-analysis of Randomized
Controlled Trials. Biol Trace Elem Res 2021; 199: 413-424
MissingFormLabel
- 357
Vincent JB.
Elucidating a biological role for chromium at a molecular level. Acc Chem Res 2000;
33: 503-510
MissingFormLabel
- 358
Asbaghi O,
Fatemeh N,
Mahnaz RK.
et al. Effects of chromium supplementation on glycemic control in patients with type
2 diabetes: a systematic review and meta-analysis of randomized controlled trials.
Pharmacol Res 2020; 161: 105098
MissingFormLabel
- 359
Yin RV,
Phung OJ.
Effect of chromium supplementation on glycated hemoglobin and fasting plasma glucose
in patients with diabetes mellitus. Nutr J 2015; 14: 14
MissingFormLabel
- 360
Suksomboon N,
Poolsup N,
Yuwanakorn A.
Systematic review and meta-analysis of the efficacy and safety of chromium supplementation
in diabetes. J Clin Pharm Ther 2014; 39: 292-306
MissingFormLabel
- 361
Chimienti F.
Zinc, pancreatic islet cell function and diabetes: new insights into an old story.
Nutr Res Rev 2013; 26: 1-11
MissingFormLabel
- 362 de Carvalho GB. Zinc’s role in the glycemic control of patients with type 2 diabetes: a systematic review. BioMetals 2017; 1-12
- 363
Fernández-Cao JC,
Warthon-Medina M,
Hall Moran V.
et al. Dietary zinc intake and whole blood zinc concentration in subjects with type
2 diabetes versus healthy subjects: A systematic review, meta-analysis and meta-regression.
J Trace Elem Med Biol 2018; 49: 241-251
MissingFormLabel
- 364
Wang X,
Wu W,
Zheng W.
et al. Zinc supplementation improves glycemic control for diabetes prevention and
management: a systematic review and meta-analysis of randomized controlled trials.
Am J Clin Nutr 2019; 110: 76-90
MissingFormLabel
- 365
Asbaghi O,
Sadeghian M,
Fouladvand F.
et al. Effects of zinc supplementation on lipid profile in patients with type 2 diabetes
mellitus: A systematic review and meta-analysis of randomized controlled trials. Nutr
Metab Cardiovasc Dis 2020; 30: 1260-1271
MissingFormLabel
- 366
Rahimi R,
Nikfar S,
Larijani B.
et al. A review on the role of antioxidants in the management of diabetes and its
complications. Biomed Pharmacother 2005; 59: 365-373
MissingFormLabel
- 367
Ashor AW,
Werner AD,
Lara J.
et al. Effects of vitamin C supplementation on glycaemic control: a systematic review
and meta-analysis of randomised controlled trials. Eur J Clin Nutr 2017; 71: 1371-1380
MissingFormLabel
- 368
Xu R,
Zhang S,
Tao A.
et al. Influence of vitamin E supplementation on glycaemic control: a meta-analysis
of randomised controlled trials. PLoS One 2014; 9: e95008
MissingFormLabel
- 369
Khodaeian M,
Tabatabaei-Malazy O,
Qorbani M.
et al. Effect of vitamins C and E on insulin resistance in diabetes: a meta-analysis
study. Eur J Clin Invest 2015; 45: 1161-1174
MissingFormLabel
- 370
Montero D,
Walther G,
Stehouwer CDA.
et al. Effect of antioxidant vitamin supplementation on endothelial function in type
2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled
trials. Obes Rev 2014; 15: 107-116
MissingFormLabel
- 371 Tabatabaei-Malazy O, Ardeshirlarijani E, Namazi N. et al. Dietary antioxidative supplements and diabetic retinopathy; a systematic review. J Diabetes Metab Disord 2019; 18: 705-716
- 372
Jeyaraman MM,
Al-Yousif NSH,
Singh Mann A.
et al. Resveratrol for adults with type 2 diabetes mellitus. Cochrane Database Syst
Rev 2020; 1: CD011919
MissingFormLabel
- 373
Palma-Duran SA,
Vlassopoulos A,
Lean M.
et al. Nutritional intervention and impact of polyphenol on glycohemoglobin (HbA1c)
in non-diabetic and type 2 diabetic subjects: Systematic review and meta-analysis.
Crit Rev Food Sci Nutr 2017; 57: 975-986
MissingFormLabel
- 374
Fogacci F,
Tocci G,
Presta V.
et al. Effect of resveratrol on blood pressure: A systematic review and meta-analysis
of randomized, controlled, clinical trials. Crit Rev Food Sci Nutr 2019; 59: 1605-1618
MissingFormLabel
- 375 Drzikova B. Haferprodukte mit modifiziertem Gehalt an β-Glucanen und resistenter Stärke und ihre Effekte auf den Gastrointestinaltrakt unter In-vitro- und In-vivo-Bedingungen (2005). Im Internet: http://opus.kobv.de/ubp/volltexte/205/592/
- 376
He L,
Zhao J,
Huang Y.
et al. The difference between oats and beta-glucan extract intake in the management
of HbA1c, fasting glucose and insulin sensitivity: a meta-analysis of randomized controlled
trials. Food Funct 2016; 7: 1413-1428
MissingFormLabel
- 377
Abbasi NN,
Purslow PP,
Tosh SM.
et al. Oat β-glucan depresses SGLT1- and GLUT2-mediated glucose transport in intestinal
epithelial cells (IEC-6). Nutr Res 2016; 36: 541-552
MissingFormLabel
- 378
Wang F,
Yu G,
Zhang Y.
et al. Dipeptidyl Peptidase IV Inhibitory Peptides Derived from Oat (Avena sativa
L.), Buckwheat (Fagopyrum esculentum), and Highland Barley (Hordeum vulgare trifurcatum
(L.) Trofim) Proteins. J Agric Food Chem 2015; 63: 9543-9549
MissingFormLabel
- 379
Liu M,
Zhang Y,
Zhang H.
et al. The anti-diabetic activity of oat β-d-glucan in streptozotocin-nicotinamide
induced diabetic mice. Int J Biol Macromol 2016; 91: 1170-1176
MissingFormLabel
- 380
Lammert A,
Kratzsch J,
Selhorst J.
et al. Clinical benefit of a short term dietary oatmeal intervention in patients with
type 2 diabetes and severe insulin resistance: a pilot study. Exp Clin Endocrinol
Diabetes 2008; 116: 132-134
MissingFormLabel
- 381
Delgado G,
Kleber ME,
Krämer BK.
et al. Dietary Intervention with Oatmeal in Patients with uncontrolled Type 2 Diabetes
Mellitus – A Crossover Study. Exp Clin Endocrinol Diabetes 2019; 127: 623-629
MissingFormLabel
- 382
Delgado GE,
Krämer BK,
Scharnagl H.
et al. Bile Acids in Patients with Uncontrolled Type 2 Diabetes Mellitus – The Effect
of Two Days of Oatmeal Treatment. Exp Clin Endocrinol Diabetes 2020; 128: 624-630
MissingFormLabel
- 383
Behall KM,
Scholfield DJ,
Hallfrisch J.
Comparison of hormone and glucose responses of overweight women to barley and oats.
J Am Coll Nutr 2005; 24: 182-188
MissingFormLabel
- 384 Braaten JT, Scott FW, Wood PJ. et al. High beta-glucan oat bran and oat gum reduce postprandial blood glucose and insulin in subjects with and without type 2 diabetes. Diabetic medicine: a journal of the British Diabetic Association 1994; 11: 312-318
- 385
Pick ME,
Hawrysh ZJ,
Gee MI.
et al. Oat bran concentrate bread products improve long-term control of diabetes:
a pilot study. J Am Diet Assoc 1996; 96: 1254-1261
MissingFormLabel
- 386
Tapola N,
Karvonen H,
Niskanen L.
et al. Glycemic responses of oat bran products in type 2 diabetic patients. Nutr Metab
Cardiovasc Dis 2005; 15: 255-261
MissingFormLabel
- 387
Tappy L,
Gügolz E,
Würsch P.
Effects of breakfast cereals containing various amounts of beta-glucan fibers on plasma
glucose and insulin responses in NIDDM subjects. Diabetes Care 1996; 19: 831-834
MissingFormLabel
- 388
Wood PJ,
Beer MU,
Butler G.
Evaluation of role of concentration and molecular weight of oat beta-glucan in determining
effect of viscosity on plasma glucose and insulin following an oral glucose load.
Br J Nutr 2000; 84: 19-23
MissingFormLabel
- 389
[Anonym].
Scientific Opinion on the substantiation of health claims related to beta glucans
and maintenance or achievement of normal blood glucose concentrations (ID 756, 802,
2935) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFS2 2010; 8: 1482
MissingFormLabel
- 390 Amtsblatt der Europäischen Union 2011 L 136/1 vom 25.5.2012. Zugriff am 04. Juli 2021 unter: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:136:0001:0040:DE:PDF
- 391
Zurbau A,
Noronha JC,
Khan TA.
et al. The effect of oat β-glucan on postprandial blood glucose and insulin responses:
a systematic review and meta-analysis. Eur J Clin Nutr 2021; 75: 1540-1554
MissingFormLabel
- 392
Battilana P,
Ornstein K,
Minehira K.
et al. Mechanisms of action of beta-glucan in postprandial glucose metabolism in healthy
men. Eur J Clin Nutr 2001; 55: 327-333
MissingFormLabel
- 393
Jenkins AL,
Jenkins DJA,
Zdravkovic U.
et al. Depression of the glycemic index by high levels of beta-glucan fiber in two
functional foods tested in type 2 diabetes. Eur J Clin Nutr 2002; 56: 622-628
MissingFormLabel
- 394
Churuangsuk C,
Hall J,
Reynolds A.
et al. Diets for weight management in adults with type 2 diabetes: an umbrella review
of published meta-analyses and systematic review of trials of diets for diabetes remission.
Diabetologia 2022; 65: 14-36
MissingFormLabel
- 395
Rosenfeld RM,
Kelly JH,
Agarwal M.
et al. Dietary Interventions to Treat Type 2 Diabetes in Adults with a Goal of Remission:
An Expert Consensus Statement from the American College of Lifestyle Medicine. Am
J Lifestyle Med 2022; 18: 342-362
MissingFormLabel
- 396
Asbaghi O,
Moradi S,
Kashkooli S.
et al. The effects of oral magnesium supplementation on glycaemic control in patients
with type 2 diabetes: a systematic review and dose-response meta-analysis of controlled
clinical trials. Br J Nutr 2022; 20: 1-10
MissingFormLabel