Synlett, Inhaltsverzeichnis Synlett 2022; 33(15): 1523-1526DOI: 10.1055/a-1890-8287 letter Formal Synthesis of Teadenols via Palladium-Catalyzed 6-endo Cyclization of an Epoxyphenol Mitsuru Kitamura∗ , Hiroki Suetake , Kosuke Hoshino , Yuta Higashijima , Masato Kisanuki , Ryohei Yuasa , Yukihiro Yamaguchi , Takahiro Shimazu , Naoya Koga , Hiro Hamada , Nobuhiro Miyori , Hirokazu Shimooka , Tatsuo Okauchi Artikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik To the memory of late Prof. Toshiyuki Kan. Abstract Formal syntheses of teadenols A and B are achieved via a key Pd-catalyzed 6-endo cyclization of a phenol possessing a vinyl epoxide moiety. Although 5-exo and 6-endo cyclizations compete during cyclizations of epoxides with a nucleophilic moiety at the 5-position, 6-endo cyclization is realized by using a palladium catalyst. Key words Key words6-endo cyclization - formal synthesis - palladium - teadenol - vinyl epoxide Volltext Referenzen References and Notes 1a Nagle DG, Ferreira D, Zhou Y.-D. Phytochemistry 2006; 67: 1849 1b Friedman M. Mol. Nutr. Food Res. 2007; 51: 116 1c Themed issue on Tea – from bushes to mugs: composition, stability and health aspects: Sant’Ana AS. Food Res. Int. 2013; 53: 557-950 1d Khan N, Mukhtar H. Nutrients 2019; 11: 39 1e Musial C, Kuban-Jankowska A, Gorska-Ponikowska M. Int. J. Mol. Sci. 2020; 21: 1744 2 Wulandari RA, Rani A, Amano M, Yanagita T, Tanaka T, Kouno I, Kawamura D, Ishimaru K. J. Nat. Med. 2011; 65: 594 3 Yanagita T, Ishimaru K, Tanaka T, Koba K, Miyazaki S, Aoyama N, Kawamura D. WO2011034217, 2011 4 Yoshida R, Ouchi H, Yoshida A, Asakawa T, Inai M, Egi M, Hamashima Y, Kan T. Org. Biomol. Chem. 2016; 14: 10783 5a Baldwin JE. J. Chem. Soc., Chem. Commun. 1976; 734 5b Gilmore K, Mohamed RK, Alabugin IV. WIREs Comput. Mol. Sci. 2016; 6: 487 6a Nicolau KC, Prasad CV. C, Somers PK, Hwang C.-K. J. Am. Chem. Soc. 1989; 111: 5330 6b He J, Ling J, Chiu P. Chem. Rev. 2014; 114: 8037 7 Hirooka Y, Nitta M, Furuta T, Kan T. Synlett 2008; 3234 8 Viton F, Landreau C, Rustidge D, Robert F, Williamson G, Barron D. Eur. J. Org. Chem. 2008; 6069 9 Khandelwal A, Hall JA, Blagg BS. J. J. Org. Chem. 2013; 78: 7859 10 No enantioselectivity was observed in the epoxidation of 11. In the HPLC analysis of 12 using a chiral column (DAICEL CHIRALCEL AD-H), four peaks due to four enantiomers of epoxide 12 were observed with almost the same intensity (see, the Supporting Information). 11 Atkins GM, Burgess EM. J. Am. Chem. Soc. 1968; 90: 4744 12a Tsuji J, Kataoka H, Kobayashi Y. Tetrahedron Lett. 1981; 22: 2575 12b Trost BM, Molandar GA. J. Am. Chem. Soc. 1981; 103: 5969 13 Physical Data of Compound 4 IR (ATR): 1716, 1618, 1592, 1500 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.41–7.26 (m, 10 H), 6.25 (d, J = 2.3 Hz, 1 H), 6.14 (d, J = 2.2 Hz, 1 H), 5.99 (d, J = 1.6 Hz, 1 H), 5.00 (s, 2 H), 4.98 (s, 2 H), 4.80 (q, J = 2.7 Hz, 1 H), 4.34 (d, J = 2.2 Hz, 1 H), 3.17 (dd, J = 18.0, 2.8 Hz, 1 H), 2.97 (dd, J = 18.0, 5.6 Hz, 1 H), 2.17 (d, J = 1.5 Hz, 3 H). 13C NMR (126 MHz, CDCl3): δ = 168.7, 158.8, 157.9, 154.8, 154.2, 136.8, 136.8, 128.6, 128.6, 128.0, 128.0, 127.5, 127.3, 119.4, 99.8, 94.5, 94.3, 71.2, 70.2, 70.1, 69.3, 24.0, 20.7. HRMS (ESI+): m/z [M + Na]+ calcd for C27H24NaO5: 451.1521; found: 451.1515. 14 Physical Data of Compound 7 IR (ATR): 1728, 1589, 1498, 1437, 1376 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.43–7.32 (m, 10 H), 6.30 (d, J = 2.3 Hz, 1 H), 6.21 (d, J = 2.3 Hz, 1 H), 5.88 (t, J = 1.8 Hz, 1 H), 5.05 (d, J = 11.9 Hz, 1 H), 5.02 (d, J = 11.9 Hz, 1 H), 5.01 (s, 2 H), 4.50 (td, J = 10.8, 5.7 Hz, 1 H), 4.23 (d, J = 10.8 Hz, 1 H), 3.29 (dd, J = 16.0, 6.1 Hz, 1 H), 2.83 (dd, J = 16.0, 6.1 Hz, 1 H), 2.17 (s, 3 H). 13C NMR (126 MHz, CDCl3): δ = 162.9, 159.1, 157.8, 157.4, 154.4, 136.63, 136.61, 128.64, 128.60, 128.1, 128.0, 127.5, 127.0, 116.9, 101.7, 94.61, 96.57, 74.1, 72.8, 70.2, 70.0, 26.5, 17.6. HRMS (ESI+): m/z [M + Na]+ calcd for C27H24NaO5: 451.1521; found: 451.1524. Zusatzmaterial Zusatzmaterial Supporting Information