Subscribe to RSS
DOI: 10.1055/a-1904-0582
Catalytic Asymmetric [3+3] Cycloaddition of Activated Isocyanides with Azomethine Imines
The authors acknowledge financial support from the National Natural Science Foundation of China (81903574), the Fundamental Research Funds for the Central Universities (2020QNA7001), and Zhejiang University.
In memory of Professor Rolf Huisgen
Abstract
Catalytic asymmetric 1,3-dipolar cycloaddition reactions of activated isocyanides with various 2π dipolarophiles have been intensively studied, affording a wide range of enantioenriched five-membered N-heterocycles. In sharp contrast, the catalytic enantioselective higher-order cycloaddition of activated isocyanides has not been achieved yet. We present here our recent work on the development of an unprecedented silver-catalyzed highly diastereo- and enantioselective [3+3] cycloaddition of activated isocyanides with azomethine imines. This method features high efficiency, good to excellent stereocontrol, wide substrate scope, as well as operational simplicity. It is also noteworthy that the same catalytic system was proved to be suitable for not only the late-stage functionalization of complex bioactive molecules but also the kinetic resolution of racemic azomethine imines.
1 Introduction
2 Results and Discussion
3 Summary and Outlook
Key words
heterocycles - cycloaddition - kinetic resolution - diastereoselectivity - enantioselectivityPublication History
Received: 06 July 2022
Accepted after revision: 19 July 2022
Accepted Manuscript online:
19 July 2022
Article published online:
12 August 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
- 1b Heravi MM, Zadsirjan V. RSC Adv. 2020; 10: 44247
- 1c Deeks ED. Drugs 2017; 77: 225
- 1d Yamada K, Hori Y, Inoue S, Yamamoto Y, Iso K, Kamiyama H, Yamaguchi A, Kimura T, Uesugi M, Ito J, Matsuki M, Nakamoto K, Harada H, Yoneda N, Takemura A, Kushida I, Wakayama N, Kubara K, Kato Y, Semba T, Yokoi A, Matsukura M, Odagami T, Iwata M, Tsuruoka A, Uenaka T, Matsui J, Matsushima T, Nomoto K, Kouji H, Owa T, Funahashi Y, Ozawa Y. Cancer Res. 2021; 81: 1052
- 1e Ballantyne AD, Perry CM. Drugs 2013; 73: 1627
- 2a Bellotti P, Koy M, Hopkinson MN, Glorius F. Nat. Rev. Chem. 2021; 5: 711
- 2b Desimoni G, Faita G, Jørgensen KA. Chem. Rev. 2006; 106: 3561
- 3 Chen D, Su S.-J, Cao Y. J. Mater. Chem. C 2014; 2: 9565
- 4a Huisgen R. Angew. Chem., Int. Ed. Engl. 1963; 2: 565
- 4b Gothelf KV, Jørgensen KA. Chem. Rev. 1998; 98: 863
- 4c Hashimoto T, Maruoka K. Chem. Rev. 2015; 115: 5366
- 4d Breugst M, Reissig H.-U. Angew. Chem. Int. Ed. 2020; 59: 12293
- 5 Ito Y, Sawamura M, Hayashi T. J. Am. Chem. Soc. 1986; 108: 6405
- 6a Gulevich AV, Zhdanko AG, Orru RV. A, Nenajdenko VG. Chem. Rev. 2010; 110: 5235
- 6b Luo J, Chen G.-S, Chen S.-J, Li Z.-D, Liu Y.-L. Chem. Eur. J. 2021; 27: 6598
- 7a Xue M.-X, Guo C, Gong L.-Z. Synlett 2009; 2191
- 7b Sladojevich F, Trabocchi A, Guarna A, Dixon DJ. J. Am. Chem. Soc. 2011; 133: 1710
- 7c Kim HY, Oh K. Org. Lett. 2011; 13: 1306
- 7d de la Campa R, Ortín I, Dixon DJ. Angew. Chem. Int. Ed. 2015; 54: 4895
- 7e Martínez-Pardo P, Blay G, Muñoz MC, Pedro JR, Sanz-Marco A, Vila C. Chem. Commun. 2018; 54: 2862
- 8a Zhou X.-T, Lin Y.-R, Dai L.-X, Sun J, Xia L.-J, Tang M.-H. J. Org. Chem. 1999; 64: 1331
- 8b Nakamura S, Maeno Y, Ohara M, Yamamura A, Funahashi Y, Shibata N. Org. Lett. 2012; 14: 2960
- 8c Ortín I, Dixon DJ. Angew. Chem. Int. Ed. 2014; 53: 3462
- 8d Hayashi M, Iwanaga M, Shiomi N, Nakane D, Masuda H, Nakamura S. Angew. Chem. Int. Ed. 2014; 53: 8411
- 9a Guo C, Xue M.-X, Zhu M.-K, Gong L.-Z. Angew. Chem. Int. Ed. 2008; 47: 3414
- 9b Song J, Guo C, Chen P.-H, Yu J, Luo S.-W, Gong L.-Z. Chem. Eur. J. 2011; 17: 7786
- 9c Wolstenhulme JR, Cavell A, Gredičak M, Driver RW, Smith MD. Chem. Commun. 2014; 50: 13585
- 9d He X.-L, Zhao H.-R, Song X, Jiang B, Du W, Chen Y.-C. ACS Catal. 2019; 9: 4374
- 9e Wan Q, Xie J.-H, Zheng C, Yuan Y.-F, You S.-L. Angew. Chem. Int. Ed. 2021; 60: 19730
- 10a Zheng S.-C, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2019; 58: 1494
- 10b Li D, Wang L, Yang Y, Zhang M, Peng T, Yang D, Wang R. Adv. Synth. Catal. 2019; 361: 3744
- 11a Monge D, Jensen KL, Marín I, Jørgensen KA. Org. Lett. 2011; 13: 328
- 11b Wang M, Liu X, He P, Lin L, Feng X. Chem. Commun. 2013; 49: 2572
- 11c Zhao M.-X, Bi H.-L, Zhou H, Yang H, Shi M. J. Org. Chem. 2013; 78: 9377
- 12a Du J, Xu X, Li Y, Pan L, Liu Q. Org. Lett. 2014; 16: 4004
- 12b He Z.-L, Wang C.-J. Chem. Commun. 2015; 51: 534
- 12c Bhattacharyya A, Shahi CK, Pradhan S, Ghorai MK. Org. Lett. 2018; 20: 2925
- 12d Kok GP. Y, Yang H, Wong MW, Zhao Y. Org. Lett. 2018; 20: 5112
- 13a Shao P.-L, Liao J.-Y, Ho YA, Zhao Y. Angew. Chem. Int. Ed. 2014; 53: 5435
- 13b Liao J.-Y, Shao P.-L, Zhao Y. J. Am. Chem. Soc. 2015; 137: 628
- 13c Liao J.-Y, Yap WJ, Wu J, Wong MW, Zhao Y. Chem. Commun. 2017; 53: 9067
- 13d Liao J.-Y, Ni Q, Zhao Y. Org. Lett. 2017; 19: 4074
- 13e Qian L, Tao L.-F, Wang W.-T, Jameel E, Luo Z.-H, Zhang T, Zhao Y, Liao J.-Y. Org. Lett. 2021; 23: 5086
- 14 Tao L.-F, Zhang S, Huang F, Wang W.-T, Luo Z.-H, Qian L, Liao J.-Y. Angew. Chem. Int. Ed. 2022; 61: e202202679
- 15a Qiu G, Kuang Y, Wu J. Adv. Synth. Catal. 2014; 356: 3483
- 15b Nájera C, Sansano JM, Yus M. Org. Biomol. Chem. 2015; 13: 8596
- 15c Deepthi A, Thomas NV, Sruthi SL. New J. Chem. 2021; 45: 8847
- 16 Xiong Y, Du Z, Chen H, Yang Z, Tan Q, Zhang C, Zhu L, Lan Y, Zhang M. J. Am. Chem. Soc. 2019; 141: 961