RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2022; 33(17): 1733-1738
DOI: 10.1055/a-1914-1722
DOI: 10.1055/a-1914-1722
letter
Photoinduced Tandem Cyclization of Alkynes with Phenylsulfinic Acids: Access to Sulfone-Substituted Dioxodibenzothiazepines or Dibenzazepines
This project is supported by the National Natural Science Foundation of China (21702044, 21971116), the Natural Science Foundation of Hebei Province (B2020201014, B2022201059), the Science and Technology Project of Hebei Education Department (QN2019063), and the Research Innovation Team of College of Chemistry and Environmental Science of Hebei University (hxkytd-py2102).

Abstract
Photoinduced tandem cyclization of alkynes with phenylsulfinic acids has been accomplished, which gives a mild strategy for the preparation of sulfone-substituted seven-membered N-heterocycles. A variety of scaled-up experiments, further transformations, and mechanistic studies were also operated in the follow-up work.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1914-1722.
- Supporting Information
Publikationsverlauf
Eingereicht: 03. Juli 2022
Angenommen nach Revision: 01. August 2022
Accepted Manuscript online:
01. August 2022
Artikel online veröffentlicht:
24. August 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Lebegue N, Gallet S, Flouquet N, Carato P, Pfeiffer B, Renard P, Léonce S, Pierré A, Chavatte P, Berthelot P. J. Med. Chem. 2005; 48: 7363
- 2 Gilleron P, Wlodarczyk N, Houssin R, Farce A, Laconde G, Goossens J.-F, Lemoine A, Pommery N, Hénichart J.-P, Millet R. Bioorg. Med. Chem. Lett. 2007; 17: 5465
- 3a Merten S, Fröhlich R, Kataeva O, Metz P. Adv. Synth. Catal. 2005; 347: 754
- 3b Yamagishi M, Nishigai K, Ishii A, Hata T, Urabe H. Angew. Chem. Int. Ed. 2012; 51: 6471
- 3c Pham MV, Ye B, Cramer N. Angew. Chem. Int. Ed. 2012; 51: 10610
- 3d Thrimurtulu N, Nallagonda R, Volla CM. R. Chem. Commun. 2017; 53: 1872
- 3e Song B, Yu C.-B, Ji Y, Chen M.-W, Zhou Y.-G. Chem. Commun. 2017; 53: 1704
- 4a Abramovitch RA, Azogu CI, McMaster IT, Vanderpool DP. J. Org. Chem. 1978; 43: 1218
- 4b Gilleron P, Wlodarczyk N, Houssin R, Farce A, Laconde G, Goossens J.-F, Lemoine A, Pommery N, Hénichart J.-P, Millet R. Bioorg. Med. Chem. Lett. 2007; 17: 5465
- 5a Zhang Z.-Q, Xu Y.-H, Dai J.-C, Li Y, Sheng J, Wang X.-S. Org. Lett. 2021; 23: 2194
- 5b Xiao Q, Lu M, Deng Y, Jian J.-X, Tong Q.-X, Zhong J.-J. Org. Lett. 2021; 23: 9303
- 5c Xiong P, Xu H, Song J, Xu H.-C. J. Am. Chem. Soc. 2018; 140: 2460
- 5d Qi X, Zhang H, Pan Z, Liang R, Zhu C, Li J, Tong QX, Gao X, Wu L.-Z, Zhong J.-J. Chem. Commun. 2019; 55: 10848
- 5e Liu D, Jiao M, Wang X, Xu P.-F. Org. Lett. 2019; 21: 4745
- 5f Zhang T, Luo M, Teng F, Li Y, Hu M, Li J.-H. Adv. Synth. Catal. 2019; 361: 4645
- 5g Yao Y, Yin Z, He F.-S, Qin X, Xie W.-L, Wu J. Chem. Commun. 2021; 57: 2883
- 5h Qu C, Song G, Ou J, Tang D, Xu Z.-G, Chen Z.-Z. Chin. J. Chem. 2021; 39: 2220
- 6 Chen S, Yan Q, Fan J, Gao Y, Yang X, Li L.-J, Liu Z.-Q, Li Z.-J. Green Chem. 2022; 24: 4742
- 7a Sasikumar TK, Qiang L, Burnett DA, Cole D, Xu R, Li H, Greenlee WJ, Clader J, Zhang L, Hyde L. Bioorg. Med. Chem. Lett. 2010; 20: 3632
- 7b Harrak Y, Casula G, Basset J, Rosell G, Plescia S, Raffa D, Cusimano MG, Pouplana R, Pujol MD. J. Med. Chem. 2010; 53: 6560
- 7c Talley JJ, Brown DL, Carter JS, Graneto MJ, Koboldt CM, Masferrer JL, Perkins WE, Rogers RS, Shaffer AF, Zhang YY, Zweifel BS, Seibert K. J. Med. Chem. 2000; 43: 775
- 8a Ghosh S, Samanta S, Ghosh AK, Neogi S, Hajra A. Adv. Synth. Catal. 2020; 362: 4552
- 8b Zhu J, Yang W, Wang X, Wu L. Adv. Synth. Catal. 2018; 360: 386
- 8c Liang S, Hofman K, Friedrich M, Manolikakes G. Eur. J. Org. Chem. 2020; 4664
- 8d Zhao S, Chen K, Zhang L, Yang W, Huang D. Adv. Synth. Catal. 2020; 362: 3516
- 8e Li C, Hu D, Jin R, Wu B, Wang C, Ke Z.-F, Wang X.-S. Org. Chem. Front. 2022; 9: 788
- 8f Hu D, Gao Q, Dai J, Cui R, Li YB, Li YM, Zhou X, Bian K, Wu B, Zhang K, Wang X.-S, Li Y. Sci. China: Chem. 2022; 65: 753
- 9a Liu Q, Lv Y, Liu R, Zhao X, Wang J, Wei W. Chin. Chem. Lett. 2021; 32: 136
- 9b Chen S, Li Y, Wang M, Jiang X. Green Chem. 2020; 22: 322
- 9c Li G.-H, Han Q.-Q, Sun Y.-Y, Chen D.-M, Wang Z.-L, Xu X.-M, Yu X.-Y. Chin. Chem. Lett. 2020; 31: 3255
- 9d Liu K.-J, Wang Z, Lu L.-H, Chen J.-Y, Zeng F, Lin Y.-W, Cao Z, Yu X, He W.-M. Green Chem. 2021; 23: 496
- 10a Wang L, Zhang M, Zhang Y, Liu Q, Zhao X, Li J.-S, Luo Z, Wei W. Chin. Chem. Lett. 2020; 31: 67
- 10b Dong D.-Q, Li L.-X, Li G.-H, Deng Q, Wang Z.-L, Long S. Chin. J. Catal. 2019; 40: 1494
- 10c Sun D, Zhang R. Org. Chem. Front. 2018; 5: 92
- 10d Jiang J, Wang Z, He W.-M. Chin. Chem. Lett. 2021; 32: 1591
- 10e Huang M.-H, Shi H.-N, Zhu C.-F, He C.-L, Hao W.-J, Tu S.-J, Jiang B. Adv. Synth. Catal. 2019; 361: 5340
- 11a Qiu G, Lai L, Cheng J, Wu J. Chem. Commun. 2018; 54: 10405
- 11b Chen Z, Liu N.-W, Bolte M, Ren H, Manolikakes G. Green Chem. 2018; 20: 3059
- 11c Lin Q, Liu Y, Xiao Z, Zheng L, Zhou X, Guo Y, Chen Q.-Y, Zheng C, Liu C. Org. Chem. Front. 2019; 6: 447
- 11d Qin XY, He L, Li J, Hao WJ, Tu SJ, Jiang B. Chem. Commun. 2019; 55: 3227
- 11e Ye S, Zheng D, Wu J, Qiu G. Chem. Commun. 2019; 55: 2214
- 11f Zhang J, Xie W, Ye S, Wu J. Org. Chem. Front. 2019; 6: 2254
- 11g Chen Y, Murray PR. D, Davies AT, Willis MC. J. Am. Chem. Soc. 2018; 140: 8781
- 11h Ni B, Zhang B, Han J, Peng B, Shan Y, Niu T. Org. Lett. 2020; 22: 670
- 11i Yao Y, Yin Z, He F.-S, Qin X, Xie W, Wu J. Chem. Commun. 2021; 57: 2883
- 12a Gong X, Wang M, Ye S, Wu J. Org. Lett. 2019; 21: 1156
- 12b Ye S, Qiu G, Wu J. Chem. Commun. 2019; 55: 1013
- 12c Ye S, Li Y, Wu J, Li Z. Chem. Commun. 2019; 55: 2489
- 12d He F.-S, Gong X, Rojsitthisak P, Wu J. J. Org. Chem. 2019; 84: 13159
- 12e Ye S, Zhou K, Rojsitthisak P, Wu J. Org. Chem. Front. 2020; 7: 14
- 13a Ye S, Wu J. Chem. Commun. 2012; 48: 10037
- 13b Wang X, Yang M, Kuang Y, Liu J.-B, Fan X, Wu J. Chem. Commun. 2020; 56: 3437
- 13c Huang C.-M, Li J, Wang S.-Y, Ji S.-J. Chin. Chem. Lett. 2020; 31: 1923
- 13d Liu Y, Wang Q.-L, Chen Z, Chen P, Tang K.-W, Zhou Q, Xie J. Org. Biomol. Chem. 2019; 17: 10020
- 13e Liu Y, Wang Q.-L, Chen Z, Li H, Xiong B.-Q, Zhang P.-L, Tang K.-W. Chem. Commun. 2020; 56: 3011
- 13f Chen Z, Zhou Q, Wang Q.-L, Chen P, Xiong B.-Q, Liang Y, Tang K.-W, Liu Y. Adv. Synth. Catal. 2020; 362: 3004
- 13g Kumar M, Ahmed R, Singh M, Sharma S, Thatikonda T, Singh PP. J. Org. Chem. 2020; 85: 716
- 13h Zhu T, Shen J, Sun Y, Wu J. Chem. Commun. 2021; 57: 915
- 13i Huang J, Ding F, Chen Z, Yang G, Wu J. Org. Chem. Front. 2021; 8: 1461
- 14a You G, Xi D, Sun J, Hao L, Xia C. Org. Biomol. Chem. 2019; 17: 9479
- 14b Marset X, Crespo J, Espinosa RM, Guillena G, Ramón DJ. Green Chem. 2019; 21: 4127
- 14c Wang M, Zhao J, Jiang X. ChemSusChem 2019; 12: 3064
- 14d Meng Y, Wang M, Jiang X. Angew. Chem. 2020; 59: 1346
- 14e Zhu H, Shen Y, Wen D, Le Z.-G, Tu T. Org. Lett. 2019; 21: 974
- 14f Zhou N, Wu M, Kuang K, Wu S, Zhang M. Adv. Synth. Catal. 2020; 362: 5391
- 14g Gong X, Chen J, Lai L, Cheng J, Sun J, Wu J. Chem. Commun. 2018; 54: 11172
- 14h Gong X, Yang M, Liu J.-B, He F.-S, Fan X, Wu J. Green Chem. 2020; 22: 1906
- 14i Huang J, Ding F, Chen Z, Yang G, Wu J. Org. Chem. Front. 2021; 8: 1461
- 15a Li Z.-J, Cui X, Niu L, Ren Y, Bian M, Yang X, Yang B, Yan Q, Zhao J. Adv. Synth. Catal. 2017; 359: 246
- 15b Zhang R, Yu H, Li Z.-J, Yan Q, Li P, Wu J, Qi J, Jiang M, Sun L. Adv. Synth. Catal. 2018; 360: 1384
- 15c Ge Y, Tian Y, Wu J, Yan Q, Zheng L, Ren Y, Zhao J, Li Z.-J. Chem. Commun. 2020; 56: 12656
- 15d Ren Y, Ge Y, Yan Q, Chen S, Li Y, Li L.-J, Liu Z.-Q, Li Z.-J. J. Org. Chem. 2021; 86: 12460
- 15e Ren Y, Yan Q, Li Y, Gao Y, Zhao J, Li L.-J, Liu Z.-Q, Li Z.-J. J. Org. Chem. 2022; 87: 8773
- 16 CCDC 2182021 contains the supplementary crystallographic data for compound 1. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
- 17a Ban Y, Dai J, Jin X, Zhang Q, Liu Q. Chem. Commun. 2019; 55: 9701
- 17b Zhou J, Zhou P, Zhao T, Ren Q, Li J. Adv. Synth. Catal. 2019; 361: 5371
- 17c Yuan P, Huang T, He J, Huang X, Jin X, Sun C, Wu L.-Z, Liu Q. Org. Chem. Front. 2021; 8: 5785
- 17d Zhao Y, Zhang Y, Liu Y, Zhu T.-H, Wu J. Org. Chem. Front. 2021; 8: 5948
- 18 (E)-6-Isopropyl-2-methyl-11-[(phenylsulfonyl)methylene]-6,11-dihydrodibenzo[c,f][1,2]thiazepine 5,5-Dioxide – Typical ProcedureA mixture of N-(2-ethynylphenyl)-N-isopropylbenzenesulfonamide (1 equiv., 0.1 mmol), ArSO2H (3 equiv., 0.30 mmol), Ru(bpy)3Cl2·6H2O (0.01 equiv., 0.001 mmol), and CH3CN (3.5 mL) was added into a 10 mL quartz tube. The reaction system was operated with 18 W blue LEDs, rt. When it was finished, the mixture was condensed under vacuum and purified by column chromatography (petroleum ether/ethyl acetate = 5/1) to access a white solid, 23.13 mg, 51% yield.1H NMR (400 MHz, CDCl3): δ = 7.82 (t, J = 7.6 Hz, 3 H), 7.65 (t, J = 6.4 Hz, 1 H), 7.55 (t, J = 5.6 Hz, 2 H), 7.51 (d, J = 4.0 Hz, 3 H), 7.47–7.42 (m, 1 H), 7.31 (d, J = 8.0 Hz, 1 H), 7.19 (s, 1 H), 6.85 (s, 1 H), 4.26–4.19 (m, 1 H), 2.39 (s, 3 H), 1.41 (d, J = 6.4 Hz, 3 H), 1.32 (d, J = 8.0 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 151.8, 142.8, 140.8, 139.2, 137.5, 134.5, 133.9, 133.5, 133.4, 131.5, 131.4, 130.9, 130.3, 129.4, 129.3, 128.6, 127.8, 127.7, 55.2, 23.3, 22.6, 21.2. HRMS (ESI): m/z calcd for C24H24NO4S2 [M + H]+: 454.1147; found: 454.1145
For selected recent references, see:
For selected recent references, see:
For selected recent references, see:
For selected recent references, see:
For selected recent references, see:
For selected recent references, see:
For selected recent references, see:
For recent selected examples, see:
For selected recent references, see:
For selected recent references, see:
For selected recent references, see: