Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2023; 34(01): 14-22
DOI: 10.1055/a-1915-8491
DOI: 10.1055/a-1915-8491
synpacts
Rhodium-Catalyzed Ring Expansion and Ring Opening of Azetidines: Domino Conjugate Addition/Inert-Bond Activation
We thank the National Natural Science Foundation of China (21702164) for financial support. The project was also supported by the Guangdong Provincial Key Laboratory of Catalysis (2020B121201002).
Abstract
Domino conjugate addition/inert-bond activation is a useful strategy for improving the efficiency of synthesis. We summarize reports on domino conjugate addition/inert-bond activation and its applications in the rhodium-catalyzed ring-expansion and ring-opening reactions of azetidines.
1 Introduction
2 Rhodium-Catalyzed Domino Conjugate Addition/β-C Cleavage/ Protonation
3 Rhodium-Catalyzed Domino Conjugate Addition/N-Directed α-C(sp3)–H Activation
4 Conclusion
Key words
conjugate addition - ring opening - ring expansion - transition-metal catalysis - inert-bond activation - azetidinesPublication History
Received: 18 July 2022
Accepted after revision: 02 August 2022
Accepted Manuscript online:
02 August 2022
Article published online:
21 September 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Feringa BL, Pineschi M, Arnold LA, Imbos R, de Vries AH. M. Angew. Chem. Int. Ed. 1997; 36: 2620
- 1b Naasz R, Arnold LA, Pineschi M, Keller E, Feringa BL. J. Am. Chem. Soc. 1999; 121: 1104
- 1c Degrado SJ, Mizutani H, Hoveyda AH. J. Am. Chem. Soc. 2001; 123: 755
- 1d Agapiou K, Cauble DF, Krische MJ. J. Am. Chem. Soc. 2004; 126: 4528
- 1e Li K, Alexakis A. Tetrahedron Lett. 2005; 46: 5823
- 1f Wang H.-F, Cui H.-F, Chai Z, Li P, Zheng C.-W, Yang Y.-Q, Zhao G. Chem. Eur. J. 2009; 15: 13299
- 1g Wang L, Meng W, Zhu C.-L, Zheng Y, Nie J, Ma J.-A. Angew. Chem. Int. Ed. 2011; 50: 9442
- 2a Labinger JA, Bercaw JE. Nature 2002; 417: 507
- 2b Balcells D, Clot E, Eisenstein O. Chem. Rev. 2010; 110: 749
- 2c Saint-Denis TG, Zhu R.-Y, Chen G, Wu Q.-F, Yu J.-Q. Science 2018; 359: eaao4798
- 3a Song F, Gou T, Wang B.-Q, Shi Z.-J. Chem. Soc. Rev. 2018; 47: 7078
- 3b Deng L, Dong G. Trends Chem. 2019; 2: 183
- 4 Shintani R, Hayashi T. Org. Lett. 2011; 13: 350
- 5 Matsuda T, Suda Y, Takahashi A. Chem. Commun. 2012; 48: 2988
- 6 Gao A, Liu X.-Y, Li H, Ding C.-H, Hou X.-L. J. Org. Chem. 2017; 82: 9988
- 7a Seiser T, Saget T, Tran DN, Cramer N. Angew. Chem. Int. Ed. 2011; 50: 7740
- 7b Mack DJ, Njardarson JT. ACS Catal. 2013; 3: 272
- 7c Jiao L, Yu Z.-X. J. Org. Chem. 2013; 78: 6842
- 7d Souillart L, Cramer N. Chem. Rev. 2015; 115: 9410
- 7e Chen P.-h, Billett BA, Tsukamoto T, Dong G. ACS Catal. 2017; 7: 1340
- 7f Fumagalli G, Stanton S, Bower JF. Chem. Rev. 2017; 117: 9404
- 8 Yang X, Kong W.-Y, Gao J.-N, Cheng L, Li N.-N, Li M, Li H.-T, Fan J, Gao J.-M, Ouyang Q, Xie J.-B. Chem. Commun. 2019; 55: 12707
- 9a Chatani N, Asaumi T, Yorimitsu S, Ikeda T, Kakiuchi F, Murai S. J. Am. Chem. Soc. 2001; 123: 10935
- 9b Pastine SJ, Gribkov DV, Sames D. J. Am. Chem. Soc. 2006; 128: 14220
- 9c Peschiulli A, Smout V, Storr TE, Mitchell EA, Eliáš Z, Herrebout W, Berthelot D, Meerpoel L, Maes BU. W. Chem.Eur. J. 2013; 19: 10378
- 9d Kawamorita S, Miyazaki T, Iwai T, Ohmiya H, Sawamura M. J. Am. Chem. Soc. 2012; 134: 12924
- 9e Jain P, Verma P, Xia G, Yu J.-Q. Nat. Chem. 2017; 9: 140
- 9f Tran AT, Yu J.-Q. Angew. Chem. Int. Ed. 2017; 56: 10530
- 10a Willcox D, Chappell BG. N, Hogg KF, Calleja J, Smalley AP, Gaunt MJ. Science 2016; 354: 851
- 10b Smalley AP, Cuthbertson JD, Gaunt MJ. J. Am. Chem. Soc. 2017; 139: 1412
- 10c Cabrera-Pardo JR, Trowbridge A, Nappi M, Ozaki K, Gaunt MJ. Angew. Chem. Int. Ed. 2017; 56: 11958
- 11a Zhu R.-Y, Liu L.-Y, Park HS, Hong K, Wu Y, Senanayake CH, Yu J.-Q. J. Am. Chem. Soc. 2017; 139: 16080
- 11b Zhuang Z, Yu J.-Q. J. Am. Chem. Soc. 2020; 142: 12015
- 11c Antien K, Geraci A, Parmentier M, Baudoin O. Angew. Chem. Int. Ed. 2021; 60: 22948
- 12 Sun L.-Z, Yang X, Li N.-N, Li M, Ouyang Q, Xie J.-B. Org. Lett. 2022; 24: 1883
- 13a Zhu W, Cai G, Ma D. Org. Lett. 2005; 7: 5545
- 13b Xiang J, Xie H, Li Z, Dang Q, Bai X. Org. Lett. 2015; 17: 3818
- 13c Bellina F, Rossi R. Tetrahedron 2006; 62: 7213
- 13d Magedov IV, Luchetti G, Evdokimov NM, Manpadi M, Steelant WF. A, Van slambrouck S, Tongwa P, Antipin MY, Kornienko A. Bioorg. Med. Chem. Lett. 2008; 18: 1392
- 13e Marti C, Carreira EM. J. Am. Chem. Soc. 2005; 127: 11505
- 13f Castellano S, Fiji HD. G, Kinderman SS, Watanabe M, de Leon P, Tamanoi F, Kwon O. J. Am. Chem. Soc. 2007; 129: 5843
- 13g Ye Z, Shi L, Shao X, Xu X, Xu Z, Li Z. J. Agric. Food Chem. 2013; 61: 312
- 14 Dilman AD, Belyakov PA, Struchkova MI, Arkhipov DE, Korlyukov AA, Tartakovsky VA. J. Org. Chem. 2010; 75: 5367
- 15 Grubbs RH, Burk PL, Carr DD. J. Am. Chem. Soc. 1975; 97: 3265
- 16a Gierz V, Urbanaite A, Seyboldt A, Kunz D. Organometallics 2012; 31: 7532
- 16b Karaca EO, Düşünceli SD, Gürbüz N, Özdemir I. J. Mol. Struct. 2020; 1216: 128351
- 17 Burg F, Rovis T. J. Am. Chem. Soc. 2021; 143: 17964s
For selected examples of domino conjugate addition/electrophile capture, see:
For selected reviews on transition-metal-catalyzed C–H activation, see:
For selected reviews on transition-metal-catalyzed C–C activation, see:
For selected reviews on rhodium-catalyzed C–C bond activation of strained rings, see:
For selected examples of additional directing-group directed α-C(sp3)–H activations of amines, see:
For selected examples of N-directed β-C(sp3)–H activation, see:
For selected examples of N-directed γ-C(sp3)–H activation, see: