Synlett 2023; 34(01): 14-22
DOI: 10.1055/a-1915-8491
synpacts

Rhodium-Catalyzed Ring Expansion and Ring Opening of ­Azetidines: Domino Conjugate Addition/Inert-Bond Activation

Ling-Zhi Sun
a   Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, P. R. of China
,
Jian-Bo Xie
a   Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, P. R. of China
b   Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. of China
› Author Affiliations
We thank the National Natural Science Foundation of China (21702164) for financial support. The project was also supported by the Guangdong Provincial Key Laboratory of Catalysis (2020B121201002).


Abstract

Domino conjugate addition/inert-bond activation is a useful strategy for improving the efficiency of synthesis. We summarize reports on domino conjugate addition/inert-bond activation and its applications in the rhodium-catalyzed ring-expansion and ring-opening reactions of azetidines.

1 Introduction

2 Rhodium-Catalyzed Domino Conjugate Addition/β-C Cleavage/ Protonation

3 Rhodium-Catalyzed Domino Conjugate Addition/N-Directed α-C(sp3)–H Activation

4 Conclusion



Publication History

Received: 18 July 2022

Accepted after revision: 02 August 2022

Accepted Manuscript online:
02 August 2022

Article published online:
21 September 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For selected examples of domino conjugate addition/electrophile capture, see:
    • 1a Feringa BL, Pineschi M, Arnold LA, Imbos R, de Vries AH. M. Angew. Chem. Int. Ed. 1997; 36: 2620
    • 1b Naasz R, Arnold LA, Pineschi M, Keller E, Feringa BL. J. Am. Chem. Soc. 1999; 121: 1104
    • 1c Degrado SJ, Mizutani H, Hoveyda AH. J. Am. Chem. Soc. 2001; 123: 755
    • 1d Agapiou K, Cauble DF, Krische MJ. J. Am. Chem. Soc. 2004; 126: 4528
    • 1e Li K, Alexakis A. Tetrahedron Lett. 2005; 46: 5823
    • 1f Wang H.-F, Cui H.-F, Chai Z, Li P, Zheng C.-W, Yang Y.-Q, Zhao G. Chem. Eur. J. 2009; 15: 13299
    • 1g Wang L, Meng W, Zhu C.-L, Zheng Y, Nie J, Ma J.-A. Angew. Chem. Int. Ed. 2011; 50: 9442

      For selected reviews on transition-metal-catalyzed C–H activation, see:
    • 2a Labinger JA, Bercaw JE. Nature 2002; 417: 507
    • 2b Balcells D, Clot E, Eisenstein O. Chem. Rev. 2010; 110: 749
    • 2c Saint-Denis TG, Zhu R.-Y, Chen G, Wu Q.-F, Yu J.-Q. Science 2018; 359: eaao4798

      For selected reviews on transition-metal-catalyzed C–C activation, see:
    • 3a Song F, Gou T, Wang B.-Q, Shi Z.-J. Chem. Soc. Rev. 2018; 47: 7078
    • 3b Deng L, Dong G. Trends Chem. 2019; 2: 183
  • 4 Shintani R, Hayashi T. Org. Lett. 2011; 13: 350
  • 5 Matsuda T, Suda Y, Takahashi A. Chem. Commun. 2012; 48: 2988
  • 6 Gao A, Liu X.-Y, Li H, Ding C.-H, Hou X.-L. J. Org. Chem. 2017; 82: 9988

    • For selected reviews on rhodium-catalyzed C–C bond activation of strained rings, see:
    • 7a Seiser T, Saget T, Tran DN, Cramer N. Angew. Chem. Int. Ed. 2011; 50: 7740
    • 7b Mack DJ, Njardarson JT. ACS Catal. 2013; 3: 272
    • 7c Jiao L, Yu Z.-X. J. Org. Chem. 2013; 78: 6842
    • 7d Souillart L, Cramer N. Chem. Rev. 2015; 115: 9410
    • 7e Chen P.-h, Billett BA, Tsukamoto T, Dong G. ACS Catal. 2017; 7: 1340
    • 7f Fumagalli G, Stanton S, Bower JF. Chem. Rev. 2017; 117: 9404
  • 8 Yang X, Kong W.-Y, Gao J.-N, Cheng L, Li N.-N, Li M, Li H.-T, Fan J, Gao J.-M, Ouyang Q, Xie J.-B. Chem. Commun. 2019; 55: 12707

    • For selected examples of additional directing-group directed α-C(sp3)–H activations of amines, see:
    • 9a Chatani N, Asaumi T, Yorimitsu S, Ikeda T, Kakiuchi F, Murai S. J. Am. Chem. Soc. 2001; 123: 10935
    • 9b Pastine SJ, Gribkov DV, Sames D. J. Am. Chem. Soc. 2006; 128: 14220
    • 9c Peschiulli A, Smout V, Storr TE, Mitchell EA, Eliáš Z, Herrebout W, Berthelot D, Meerpoel L, Maes BU. W. Chem.Eur. J. 2013; 19: 10378
    • 9d Kawamorita S, Miyazaki T, Iwai T, Ohmiya H, Sawamura M. J. Am. Chem. Soc. 2012; 134: 12924
    • 9e Jain P, Verma P, Xia G, Yu J.-Q. Nat. Chem. 2017; 9: 140
    • 9f Tran AT, Yu J.-Q. Angew. Chem. Int. Ed. 2017; 56: 10530

      For selected examples of N-directed β-C(sp3)–H activation, see:
    • 10a Willcox D, Chappell BG. N, Hogg KF, Calleja J, Smalley AP, Gaunt MJ. Science 2016; 354: 851
    • 10b Smalley AP, Cuthbertson JD, Gaunt MJ. J. Am. Chem. Soc. 2017; 139: 1412
    • 10c Cabrera-Pardo JR, Trowbridge A, Nappi M, Ozaki K, Gaunt MJ. Angew. Chem. Int. Ed. 2017; 56: 11958

      For selected examples of N-directed γ-C(sp3)–H activation, see:
    • 11a Zhu R.-Y, Liu L.-Y, Park HS, Hong K, Wu Y, Senanayake CH, Yu J.-Q. J. Am. Chem. Soc. 2017; 139: 16080
    • 11b Zhuang Z, Yu J.-Q. J. Am. Chem. Soc. 2020; 142: 12015
    • 11c Antien K, Geraci A, Parmentier M, Baudoin O. Angew. Chem. Int. Ed. 2021; 60: 22948
  • 12 Sun L.-Z, Yang X, Li N.-N, Li M, Ouyang Q, Xie J.-B. Org. Lett. 2022; 24: 1883
    • 13a Zhu W, Cai G, Ma D. Org. Lett. 2005; 7: 5545
    • 13b Xiang J, Xie H, Li Z, Dang Q, Bai X. Org. Lett. 2015; 17: 3818
    • 13c Bellina F, Rossi R. Tetrahedron 2006; 62: 7213
    • 13d Magedov IV, Luchetti G, Evdokimov NM, Manpadi M, Steelant WF. A, Van slambrouck S, Tongwa P, Antipin MY, Kornienko A. Bioorg. Med. Chem. Lett. 2008; 18: 1392
    • 13e Marti C, Carreira EM. J. Am. Chem. Soc. 2005; 127: 11505
    • 13f Castellano S, Fiji HD. G, Kinderman SS, Watanabe M, de Leon P, Tamanoi F, Kwon O. J. Am. Chem. Soc. 2007; 129: 5843
    • 13g Ye Z, Shi L, Shao X, Xu X, Xu Z, Li Z. J. Agric. Food Chem. 2013; 61: 312
  • 14 Dilman AD, Belyakov PA, Struchkova MI, Arkhipov DE, Korlyukov AA, Tartakovsky VA. J. Org. Chem. 2010; 75: 5367
  • 15 Grubbs RH, Burk PL, Carr DD. J. Am. Chem. Soc. 1975; 97: 3265
    • 16a Gierz V, Urbanaite A, Seyboldt A, Kunz D. Organometallics 2012; 31: 7532
    • 16b Karaca EO, Düşünceli SD, Gürbüz N, Özdemir I. J. Mol. Struct. 2020; 1216: 128351
  • 17 Burg F, Rovis T. J. Am. Chem. Soc. 2021; 143: 17964s