Subscribe to RSS
DOI: 10.1055/a-1918-4191
Unlocking Electrophilic N-Aryl Intermediates from Aryl Azides, Nitroarenes, and Aryl Amines in Cyclization–Migration Reactions
The University of Illinois at Chicago, the ACS Petroleum Research Fund (46850-G1, 51853-ND7), the National Institute of General Medical Sciences (NIGMS) (R01GM084945, R01GM138388), and the National Science Foundation (CHE-1265630, CHE-1564959) are gratefully acknowledged for supporting our research program over the past 16 years.
Dedicated to Driver group members past, present, and future.
Abstract
An account of our development of reactions to construct N-heterocycles by triggering cyclization–migration tandem reactions from aryl azides, nitroarenes, and aryl amines is described. The reactivity patterns of metal N-aryl nitrenes, nitrosoarenes, N-aryl nitrogen radical anions, and N-aryl nitrenoids are compared.
1 Introduction
2 Unlocking the Reactivity Embedded in Aryl Azides
3 Exploiting the Reactivity of Nitrosoarenes Generated from Nitroarenes
4 Radical Anion N-Aryl Nitrogen Reactive Intermediates from Nitroarenes
5 Oxidation of Aryl Amines to Access Electrophilic N-Aryl Nitrenoids
6 Conclusion
Publication History
Received: 01 July 2022
Accepted: 03 August 2022
Accepted Manuscript online:
05 August 2022
Article published online:
11 October 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Smolinsky G, Feuer BI. J. Org. Chem. 1964; 29: 3097
- 1b Meijer EW, Nijhuis S, Van Vroonhoven FC. B. M. J. Am. Chem. Soc. 1988; 110: 7209
- 1c Murata S, Yoshidome R, Satoh Y, Kato N, Tomioka H. J. Org. Chem. 1995; 60: 1428
- 1d Wentrup C. Chem. Rev. 2017; 117: 4562
- 2a Schrock AK, Schuster GB. J. Am. Chem. Soc. 1984; 106: 5228
- 2b Liang T.-Y, Schuster GB. J. Am. Chem. Soc. 1987; 109: 7803
- 2c Shields CJ, Chrisope DR, Schuster GB, Dixon AJ, Poliakoff M, Turner JJ. J. Am. Chem. Soc. 1987; 109: 4723
- 2d Li YZ, Kirby JP, George MW, Poliakoff M, Schuster GB. J. Am. Chem. Soc. 1988; 110: 8092
- 3a Smolinsky G. J. Am. Chem. Soc. 1960; 82: 4717
- 3b Smolinsky G. J. Org. Chem. 1961; 26: 4108
- 3c Smolinsky G. J. Am. Chem. Soc. 1961; 83: 2489
- 3d Smolinsky G, Feuer BI. J. Am. Chem. Soc. 1964; 86: 3085
- 3e Smolinsky G, Wasserman E, Yager WA. J. Am. Chem. Soc. 1962; 84: 3220
- 4a Leyva E, Platz MS, Persy G, Wirz J. J. Am. Chem. Soc. 1986; 108: 3783
- 4b Leyva E, Young MJ. T, Platz MS. J. Am. Chem. Soc. 1986; 108: 8307
- 4c Soundararajan N, Platz MS. J. Org. Chem. 1990; 55: 2034
- 4d Platz MS. Acc. Chem. Res. 1995; 28: 487
- 4e Gritsan NP, Yuzawa T, Platz MS. J. Am. Chem. Soc. 1997; 119: 5059
- 4f Gritsan NP, Zhu Z, Hadad CM, Platz MS. J. Am. Chem. Soc. 1999; 121: 1202
- 4g Borden WT, Gritsan NP, Hadad CM, Karney WL, Kemnitz CR, Platz MS. Acc. Chem. Res. 2000; 33: 765
- 4h Burdzinski GT, Gustafson TL, Hackett JC, Hadad CM, Platz MS. J. Am. Chem. Soc. 2005; 127: 13764
- 4i Burdzinski G, Hackett JC, Wang J, Gustafson TL, Hadad CM, Platz MS. J. Am. Chem. Soc. 2006; 128: 13402
- 4j Burdzinski GT, Middleton CT, Gustafson TL, Platz MS. J. Am. Chem. Soc. 2006; 128: 14804
- 4k Gritsan NP, Platz MS. Chem. Rev. 2006; 106: 3844
- 4l Wang J, Kubicki J, Burdzinski G, Hackett JC, Gustafson TL, Hadad CM, Platz MS. J. Org. Chem. 2007; 72: 7581
- 4m Wang J, Kubicki J, Platz MS. Org. Lett. 2007; 9: 3973
- 5 McCulla RD, Burdzinski G, Platz MS. Org. Lett. 2006; 8: 1637
- 6a Morawietz J, Sander W. J. Org. Chem. 1996; 61: 4351
- 6b Dunkin IR, Thomson PC. P. J. Chem. Soc., Chem. Commun. 1980; 499
- 7 Chapman OL, Le Roux JP. J. Am. Chem. Soc. 1978; 100: 282
- 8a Padwa A, Hornbuckle SF. Chem. Rev. 1991; 91: 263
- 8b Padwa A, Weingarten MD. Chem. Rev. 1996; 96: 223
- 8c Boche G, Lohrenz JC. W. Chem. Rev. 2001; 101: 697
- 8d Doyle MP, Ren T. Prog. Inorg. Chem. 2001; 49: 113
- 8e Davies HM. L, Beckwith RE. J. Chem. Rev. 2003; 103: 2861
- 8f Doyle MP. Top. Organomet. Chem. 2004; 13: 203
- 8g Davies HM. L, Long MS. Angew. Chem. Int. Ed. 2005; 44: 3518
- 8h Taber DF, Joshi PV. In Modern Rhodium-Catalyzed Organic Reactions, Evans P. A. Wiley-VCH; Weinheim: 2005: 357
- 8i Davies HM. L. Angew. Chem. Int. Ed. 2006; 45: 6422
- 8j Doyle MP. J. Org. Chem. 2006; 71: 9253
- 8k Doyle MP, Duffy R, Ratnikov M, Zhou L. Chem. Rev. 2010; 110: 704
- 8l Davies HM. L, Du Bois J, Yu J.-Q. Chem. Soc. Rev. 2011; 40: 1855
- 9a Katsuki T. Chem. Lett. 2005; 34: 1304
- 9b Cenini S, Gallo E, Caselli A, Ragaini F, Fantauzzi S, Piangiolino C. Coord. Chem. Rev. 2006; 250: 1234
- 10a Cenini S, Gallo E, Penoni A, Ragaini F, Tollari S. Chem. Commun. 2000; 2265
- 10b Ragaini F, Penoni A, Gallo E, Tollari S, Gotti CL, Lapadula M, Mangioni E, Cenini S. Chem. Eur. J. 2003; 9: 249
- 11a Hassner A, Fowler FW. J. Am. Chem. Soc. 1968; 90: 2869
- 11b Nishiwaki T. J. Chem. Soc., Chem. Commun. 1972; 565
- 11c Giezendanner H, Märky M, Jackson B, Hansen H.-J, Schmid H. Helv. Chim. Acta 1972; 55: 745
- 11d Padwa A. Acc. Chem. Res. 1976; 9: 371
- 11e Padwa A, Carlsen PH. J. J. Org. Chem. 1976; 41: 180
- 11f Padwa A, Carlsen PH. J. J. Org. Chem. 1978; 43: 3757
- 11g Padwa A, Carlsen PH. J. Tetrahedron Lett. 1978; 19: 433
- 11h Padwa A, Carlsen PH. J. J. Org. Chem. 1978; 43: 2029
- 11i Nair V. In The Chemistry of Heterocyclic Compounds 1983; 215
- 12a Alper H, Wollowitz S. J. Am. Chem. Soc. 1975; 97: 3541
- 12b Alper H, Prickett JE. Chem. Commun. 1976; 483
- 12c Alper H, Prickett JE, Wollowitz S. J. Am. Chem. Soc. 1977; 99: 4330
- 12d Inada A, Heimgartner H, Schmid H. Tetrahedron Lett. 1979; 20: 2983
- 12e Alper H, Mahatantila CP. Organometallics 1981; 1: 70
- 12f Hegedus LS, Kramer A, Yijun C. Organometallics 1985; 4: 1747
- 12g Curtis MD, Hay MS, Butler WM, Kampf J, Rheingold AL, Haggerty BS. Organometallics 1992; 11: 2884
- 12h Lo Y.-H, Hsu S.-C, Huang S.-L, Lin Y.-C, Liu Y.-H, Wang Y. Organometallics 2004; 23: 5924
- 12i Padwa A, Stengel T. ARKIVOC 2005;
- 13a Hassner A, Fowler FW. Tetrahedron Lett. 1967; 8: 1545
- 13b Hortmann AG, Robertson DA, Gillard BK. J. Org. Chem. 1972; 37: 322
- 14 Stokes BJ, Dong H, Leslie BE, Pumphrey AL, Driver TG. J. Am. Chem. Soc. 2007; 129: 7500
- 15 Dong H, Shen M, Redford JE, Stokes BJ, Pumphrey AL, Driver TG. Org. Lett. 2007; 9: 5191
- 16 Shen M, Leslie BE, Driver TG. Angew. Chem. Int. Ed. 2008; 47: 5056
- 17 Stokes BJ, Jovanović B, Dong H, Richert KJ, Riell RD, Driver TG. J. Org. Chem. 2009; 74: 3225
- 18 Dong H, Latka RT, Driver TG. Org. Lett. 2011; 13: 2726
- 19 Pumphrey AL, Dong H, Driver TG. Angew. Chem. Int. Ed. 2012; 51: 5920
- 20 Shen M, Driver TG. Org. Lett. 2008; 10: 3367
- 21 Stokes BJ, Vogel CV, Urnezis LK, Pan M, Driver TG. Org. Lett. 2010; 12: 2884
- 22 Sun K, Sachwani R, Richert KJ, Driver TG. Org. Lett. 2009; 11: 3598
- 23 Nguyen Q, Sun K, Driver TG. J. Am. Chem. Soc. 2012; 134: 7262
- 24 Stokes BJ, Richert KJ, Driver TG. J. Org. Chem. 2009; 74: 6442
- 25 Smith PA. S, Rowe CD, Hansen DW. Tetrahedron Lett. 1983; 24: 5169
- 26a Davies IW, Guner VA, Houk KN. Org. Lett. 2004; 6: 743
- 26b Leach AG, Houk KN, Davies IW. Synthesis 2005; 3463
- 27 Das A, Wang C.-H, Van Trieste GP, Sun C.-J, Chen Y.-S, Reibenspies JH, Powers DC. J. Am. Chem. Soc. 2020; 142: 19862
- 28 Sun K, Liu S, Bec PM, Driver TG. Angew. Chem. Int. Ed. 2011; 50: 1702
- 29 Stokes BJ, Liu S, Driver TG. J. Am. Chem. Soc. 2011; 133: 4702
- 30 Pelkey ET, Gribble GW. Tetrahedron Lett. 1997; 38: 5603
- 31a Gairns RS, Moody CJ, Rees CW. J. Chem. Soc., Chem. Commun. 1985; 1818
- 31b Gairns RS, Moody CJ, Rees CW, Tsoi SC. J. Chem. Soc., Perkin Trans. 1 1986; 497
- 31c Gairns RS, Moody CJ, Rees CW. J. Chem. Soc., Perkin Trans. 1 1986; 501
- 32 Kong C, Jana N, Driver TG. Org. Lett. 2013; 15: 824
- 33 Jones C, Nguyen Q, Driver TG. Angew. Chem. Int. Ed. 2014; 53: 785
- 34 Kong C, Driver TG. Org. Lett. 2015; 17: 802
- 35 Kong C, Su N, Zhou F, Jana N, Driver TG. Tetrahedron Lett. 2015; 56: 3262
- 36 Mazumdar W, Jana N, Thurman BT, Wink DJ, Driver TG. J. Am. Chem. Soc. 2017; 139: 5031
- 37 Espino CG, Fiori KW, Kim M, Du Bois J. J. Am. Chem. Soc. 2004; 126: 15378
- 38a Cadogan JI. G, Cameron-Wood M. Proc. Chem. Soc. 1962; 361
- 38b Cadogan JI. G, Cameron-Wood M, Mackie RK, Searle RJ. G. J. Chem. Soc. 1965; 4831
- 39 Cadogan JI. G. Acc. Chem. Res. 1972; 5: 303
- 40a Sundberg RJ, Yamazaki T. J. Org. Chem. 1967; 32: 290
- 40b Sundberg RJ, Kotchmar GS. J. Org. Chem. 1969; 34: 2285
- 41 Akazome M, Kondo T, Watanabe Y. J. Org. Chem. 1994; 59: 3375
- 42a Smitrovich JH, Davies IW. Org. Lett. 2004; 6: 533
- 42b Davies IW, Smitrovich JH, Sidler R, Qu C, Gresham V, Bazaral C. Tetrahedron 2005; 61: 6425
- 43 Jana N, Zhou F, Driver TG. J. Am. Chem. Soc. 2015; 137: 6738
- 44 Ford RL, Alt I, Jana N, Driver TG. Org. Lett. 2019; 21: 8827
- 45 Zhou F, Wang D.-S, Guan X, Driver TG. Angew. Chem. Int. Ed. 2017; 56: 4530
- 46 Shevlin M, Guan X, Driver TG. ACS Catal. 2017; 5518
- 47 Guan X, Zhu H, Driver TG. ACS Catal. 2021; 11: 12417
- 48a Tong S, Xu Z, Mamboury M, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2015; 54: 11809
- 48b Li G, Piemontesi C, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2019; 58: 2870
- 48c Ren W, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2014; 53: 1818
- 48d Delayre B, Piemontesi C, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2020; 59: 13990
- 49 Sun C.-L, Li H, Yu D.-G, Yu M, Zhou X, Lu X.-Y, Huang K, Zheng S.-F, Li B.-J, Shi Z.-J. Nat. Chem. 2010; 2: 1044
- 50 Shirakawa E, Itoh K.-i, Higashino T, Hayashi T. J. Am. Chem. Soc. 2010; 132: 15537
- 51 Liu W, Cao H, Zhang H, Zhang H, Chung KH, He C, Wang H, Kwong FY, Lei A. J. Am. Chem. Soc. 2010; 132: 16737
- 52 Roman DS, Takahashi Y, Charette AB. Org. Lett. 2011; 13: 3242
- 53a Zhou S, Anderson GM, Mondal B, Doni E, Ironmonger V, Kranz M, Tuttle T, Murphy JA. Chem. Sci. 2014; 5: 476
- 53b Barham JP, Coulthard G, Emery KJ, Doni E, Cumine F, Nocera G, John MP, Berlouis LE. A, McGuire T, Tuttle T, Murphy JA. J. Am. Chem. Soc. 2016; 138: 7402
- 54 Zhao Y, Zhu H, Sung S, Wink DJ, Zadrozny JM, Driver TG. Angew. Chem. Int. Ed. 2021; 60: 19207
- 55a Asao N, Sato K, Yamamoto Y. Tetrahedron Lett. 2003; 44: 5675
- 55b Söderberg BC. G, Gorugantula SP, Howerton CR, Petersen JL, Dantale SW. Tetrahedron 2009; 65: 7357
- 55c Patel P, Ramana CV. Org. Biomol. Chem. 2011; 9: 7327
- 55d Suneel Kumar CV, Ramana CV. Org. Lett. 2014; 16: 4766
- 55e Liu R.-R, Ye S.-C, Lu C.-J, Zhuang G.-L, Gao J.-R, Jia Y.-X. Angew. Chem. Int. Ed. 2015; 54: 11205
- 55f Fu W, Song Q. Org. Lett. 2018; 20: 393
- 55g Marien N, Reddy BN, De Vleeschouwer F, Goderis S, Van Hecke K, Verniest G. Angew. Chem. Int. Ed. 2018; 57: 5660
- 56 See: Barral K, Moorhouse AD, Moses JE. Org. Lett. 2007; 9: 1809
- 57a Magdziak D, Meek SJ, Pettus TR. R. Chem. Rev. 2004; 104: 1383
- 57b Pathak TP, Sigman MS. J. Org. Chem. 2011; 76: 9210
- 57c Bai W.-J, David JG, Feng Z.-G, Weaver MG, Wu K.-L, Pettus TR. R. Acc. Chem. Res. 2014; 47: 3655
- 57d Singh MS, Nagaraju A, Anand N, Chowdhury S. RCS Adv. 2014; 4: 55924
- 58a Defoin A. Synthesis 2004; 706
- 58b Antonchick AP, Samanta R, Kulikov K, Lategahn J. Angew. Chem. Int. Ed. 2011; 50: 8605
- 58c Cho SH, Yoon J, Chang S. J. Am. Chem. Soc. 2011; 133: 5996
- 58d Manna S, Serebrennikova PO, Utepova IA, Antonchick AP, Chupakhin ON. Org. Lett. 2015; 17: 4588
- 58e Fra L, Muñiz K. Chem. Eur. J. 2016; 22: 4351
- 58f Bering L, Manna S, Antonchick AP. Chem. Eur. J. 2017; 23: 10936
- 59a Espino CG, Du Bois J. Angew. Chem. Int. Ed. 2001; 40: 598
- 59b Espino CG, Wehn PM, Chow J, Du Bois J. J. Am. Chem. Soc. 2001; 123: 6935
- 60a Espino CG, Du Bois J. In Modern Rhodium-Catalyzed Organic Reactions . Evans PA. Wiley-VCH; Weinheim: 2005: 379
- 60b Du Bois J. Org. Process Res. Dev. 2011; 15: 758
- 60c Roizen JL, Harvey ME, Du Bois J. Acc. Chem. Res. 2012; 45: 911
- 61 Narayan R, Manna S, Antonchick AP. Synlett 2015; 26: 1785
- 62 Deng T, Mazumdar W, Ford RL, Jana N, Izar R, Wink DJ, Driver TG. J. Am. Chem. Soc. 2020; 142: 4456
- 63 Deng T, Shi E, Thomas E, Driver TG. Org. Lett. 2020; 22: 9102
For reports of decomposition products that are formed from the pyrolysis or photolysis of aryl azides, see:
See:
See:
See:
See:
See:
See:
For recent reviews, see: