Subscribe to RSS
DOI: 10.1055/s-0034-1379912
Hypervalent Iodine(III) in Direct Carbon–Hydrogen Bond Functionalization
Publication History
Received: 10 February 2015
Accepted after revision: 18 March 2015
Publication Date:
20 May 2015 (online)
Abstract
Direct methods of novel bond formation through functionalization of nonreactive carbon–hydrogen bonds represent an efficient synthetic approach. Cross-dehydrogenative coupling has emerged as an area of huge potential and importance for novel bond formation. The application of hypervalent iodine(III) reagents in direct carbon–hydrogen bond functionalization reactions is of immense interest because the functionalization of the nonreactive carbon–hydrogen bonds proceeds under metal-free reaction conditions. This account covers recent developments in the area of hypervalent iodine(III) mediated direct carbon–hydrogen bond functionalization.
1 Introduction
2 Intramolecular Amination for Carbazole Synthesis
3 Intermolecular Amination
4 Intermolecular Annulation
5 Intermolecular Nucleophilic Amination
6 Hypervalent Iodine(III) Mediated Radical Reactions
6.1 Cross-Dehydrogenative Coupling of a Heterocycle and an Aldehyde
6.2 Cross-Dehydrogenative Coupling of a Heterocycle and an Alkane
6.3 Intramolecular Cyclization
7 Conclusion
-
References
- 1a Zhdankin VV, Stang PJ. Chem. Rev. 2008; 108: 5299
- 1b Yoshimura A, Koski SR, Kastern BJ, Fuchs JM, Jones TN, Yusubova RY, Nemykin VN, Zhdankin VV. Chem. Eur. J. 2014; 20: 5895
- 1c Quideau S, Pouysegu L, Deffieux D. Synlett 2008; 467
- 1d Dohi T, Ito M, Yamaoka N, Morimoto K, Fujioka H, Kita Y. Tetrahedron 2009; 65: 10797
- 1e Brand JP, Gonzalez DF, Nicolai S, Waser J. Chem. Commun. 2011; 47: 102
- 1f Louillat ML, Patureau FW. Chem. Soc. Rev. 2014; 43: 901
- 1g Collet F, Lescot C, Dauban P. Chem. Soc. Rev. 2011; 40: 1926
- 1h Collet F, Dodd RH, Dauban P. Chem. Commun. 2009; 5061
- 1i Samanta R, Matcha K, Antonchick AP. Eur. J. Org. Chem. 2013; 5769
- 1j Zhdankin VV. Hypervalent Iodine Chemistry: Preparation, Structure and Synthetic Applications of Polyvalent Iodine Compounds. Wiley; Chichester: 2014
- 1k Richardson RD, Wirth T. Angew. Chem. Int. Ed. 2006; 45: 4402
- 1l Uyanik M, Ishihara K. Chem. Commun. 2009; 2086
- 2a Klussmann M, Sureshkumar D. Synthesis 2011; 353
- 2b Li CJ. Acc. Chem. Res. 2009; 42: 335
- 2c Rohlmann R, Mancheno OG. Synlett 2013; 24: 6
- 2d Scheuermann CJ. Chem. Asian J. 2010; 5: 436
- 2e Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
- 2f Yoo WJ, Li CJ. Top. Curr. Chem. 2010; 292: 281
- 2g Sun C.-L, Shi Z.-J. Chem. Rev. 2014; 114: 9219
- 2h See also ref. 1d.
- 2i Kita Y, Dohi T, Morimoto K. J. Synth. Org. Chem., Jpn. 2011; 69: 1241
- 3a Guram AS, Buchwald SL. J. Am. Chem. Soc. 1994; 116: 7901
- 3b Paul F, Patt J, Hartwig JF. J. Am. Chem. Soc. 1994; 116: 5969
- 4a Garrett CE, Prasad K. Adv. Synth. Catal. 2004; 346: 889
- 4b Nair D, Scarpello JT, White LS, Freitas dos Santos LM, Vankelecom IF. J, Livingston AG. Tetrahedron Lett. 2001; 42: 8219
- 5a Antonchick AP, Samanta R, Kulikov K, Lategahn J. Angew. Chem. Int. Ed. 2011; 50: 8605
- 5b Samanta R, Antonchick AP. Synlett 2012; 23: 809
- 5c Samanta R, Kulikov K, Strohmann C, Antonchick AP. Synthesis 2012; 44: 2325
- 6 Dohi T, Kita Y. Chem. Commun. 2009; 2073
- 7 Tohma H, Iwata M, Maegawa T, Kita Y. Tetrahedron Lett. 2002; 43: 9241
- 8 Cho SH, Yoon J, Chang S. J. Am. Chem. Soc. 2011; 133: 5996
- 9a Alla SK, Kumar RK, Sadhu P, Punniyamurthy T. Org. Lett. 2013; 15: 1334
- 9b Kutsumura N, Kunimatsu S, Kagawa K, Otani T, Saito T. Synthesis 2011; 3235
- 9c Chi Y, Zhang W.-X, Xi Z. Org. Lett. 2014; 16: 6274
- 9d He Y, Huang J, Liang D, Liu L, Zhu Q. Chem. Commun. 2013; 49: 7352
- 9e Liang D, He Y, Liu L, Zhu Q. Org. Lett. 2013; 15: 3476
- 9f Wang H, Wang Y, Peng C, Zhang J, Zhu Q. J. Am. Chem. Soc. 2010; 132: 13217
- 10 Mao L, Li Y, Xiong T, Sun K, Zhang Q. J. Org. Chem. 2013; 78: 733
- 11 Kim HJ, Kim J, Cho SH, Chang S. J. Am. Chem. Soc. 2011; 133: 16382
- 12 Kantak AA, Potavathri S, Barham RA, Romano KM, DeBoef B. J. Am. Chem. Soc. 2011; 133: 19960
- 13 Samanta R, Bauer JO, Strohmann C, Antonchick AP. Org. Lett. 2012; 14: 5518
- 14 Shrestha R, Mukherjee P, Tan Y, Litman ZC, Hartwig JF. J. Am. Chem. Soc. 2013; 135: 8480
- 15a Itoh N, Sakamoto T, Miyazawa E, Kikugawa Y. J. Org. Chem. 2002; 67: 7424
- 15b Liu H, Wang X, Gu Y. Org. Biomol. Chem. 2011; 9: 1614
- 15c Liu H, Xie Y, Gu Y. Tetrahedron Lett. 2011; 52: 4324
- 15d Wei H.-L, Piou T, Dufour J, Neuville L, Zhu J. Org. Lett. 2011; 13: 2244
- 16 Samanta R, Lategahn J, Antonchick AP. Chem. Commun. 2012; 48: 3194
- 17 Manna S, Antonchick AP. Angew. Chem. Int. Ed. 2014; 53: 7324
- 18a Ackermann L, Lygin AV, Hofmann N. Angew. Chem. Int. Ed. 2011; 50: 6379
- 18b Kajita Y, Matsubara S, Kurahashi T. J. Am. Chem. Soc. 2008; 130: 6058
- 18c Shiota H, Ano Y, Aihara Y, Fukumoto Y, Chatani N. J. Am. Chem. Soc. 2011; 133: 14952
- 18d Wang HG, Grohmann C, Nimphius C, Glorius F. J. Am. Chem. Soc. 2012; 134: 19592
- 18e Zhong HB, Yang D, Wang SQ, Huang JH. Chem. Commun. 2012; 48: 3236
- 19 Chen Z.-W, Zhu Y.-Z, Ou J.-W, Wang Y.-P, Zheng J.-Y. J. Org. Chem. 2014; 79: 10988
- 20a Begunov RS, Ryzvanovicha GA. Russ. Chem. Rev. 2013; 82: 77
- 20b Takeshita H, Watanabe J, Kimura Y, Kawakami K, Takahashi H, Takemura M, Kitamura A, Someya K, Nakajima R. Bioorg. Med. Chem. Lett. 2010; 20: 3893
- 21 Manna S, Matcha K, Antonchick AP. Angew. Chem. Int. Ed. 2014; 53: 8163
- 22a Fra L, Millan A, Souto JA, Muñiz K. Angew. Chem. Int. Ed. 2014; 53: 7349
- 22b Romero RM, Woeste TH, Muñiz K. Chem. Asian J. 2014; 9: 972
- 22c Martinez C, Muñiz K. Adv. Synth. Catal. 2014; 356: 205
- 22d Purkait N, Okumura S, Souto JA, Muñiz K. Org. Lett. 2014; 16: 4750
- 22e Roeben C, Souto JA, Escudero-Adan EC, Muñiz K. Org. Lett. 2013; 15: 1008
- 22f Souto JA, Martinez C, Velilla I, Muñiz K. Angew. Chem. Int. Ed. 2013; 52: 1324
- 22g Souto JA, Becker P, Iglesias A, Muñiz K. J. Am. Chem. Soc. 2012; 134: 15505
- 22h Souto JA, Zian D, Muñiz K. J. Am. Chem. Soc. 2012; 134: 7242
- 22i Campos J, Goforth SK, Crabtree RJ, Gunnoe TB. RSC Adv. 2014; 4: 47951
- 22j Higuchi K, Inaba M, Naganuma A, Ishizaki T, Tayu M, Kawasaki T. Heterocycles 2014; 89: 2105
- 23 Roeben C, Souto JA, Gonzalez Y, Lishchynskyi A, Muñiz K. Angew. Chem. Int. Ed. 2011; 50: 9478
- 24 Duncton MA. J. Med. Chem. Commun. 2011; 2: 1135
- 25 Matcha K, Antonchick AP. Angew. Chem. Int. Ed. 2013; 52: 2082
- 26 Zheng Z, Dian L, Yuan Y, Zhang-Negrerie D, Du Y, Zhao K. J. Org. Chem. 2014; 79: 7451
- 27 Antonchick AP, Burgmann L. Angew. Chem. Int. Ed. 2013; 52: 3267
- 28 Luo Y.-R. Handbook of Bond Dissociation Energies in Organic Compounds. CRC; Boca Raton, FL: 2002
- 29 Narayan R, Antonchick AP. Chem. Eur. J. 2014; 20: 4568
- 30a Samanta R, Narayan R, Antonchick AP. Org. Lett. 2012; 14: 6108
- 30b Samanta R, Narayan R, Bauer JO, Strohmann C, Sievers S, Antonchick AP. Chem. Commun. 2015; 51: 925
- 31 Matcha K, Narayan R, Antonchick AP. Angew. Chem. Int. Ed. 2013; 52: 7985
- 32 Li L, Deng M, Zheng S.-C, Xiong Y.-P, Tan B, Liu X.-Y. Org. Lett. 2014; 16: 504
- 33 Fu W, Xu F, Fu Y, Xu C, Li S, Zou D. Eur. J. Org. Chem. 2014; 709
- 34 Zhang L, Li Z, Liu Z.-Q. Org. Lett. 2014; 16: 3688
- 35a Wang JW, Yuan YC, Xiong R, Zhang-Negrerie D, Du YF, Zhao K. Org. Lett. 2012; 14: 2210
- 35b Lv J, Zhang-Negrerie D, Deng J, Du Y, Zhao K. J. Org. Chem. 2014; 79: 1111
- 35c Wu H, He Y.-P, Xu L, Zhang D.-Y, Gong L.-Z. Angew. Chem. Int. Ed. 2014; 53: 3466
For a comprehensive review of transition-metal-free coupling reactions, see: