Subscribe to RSS
DOI: 10.1055/a-1928-3417
Design and Synthesis of a Flavin–Samarium Complex as an Efficient Photocatalyst for Sulfoxidation Reactions
Science and Engineering Research Board (SERB), India (CRG/2018/001645)
Abstract
We report the effect of samarium complexation of a modified flavin entity in displaying efficient photocatalytic activity toward sulfoxidation reactions. Single-crystal X-ray diffraction studies were performed for the structural characterization of the photocatalyst. Spectroscopic and electrochemical studies were undertaken to better understand the nature of the complex when compared with the nonmetalated flavin moiety. The catalytic efficiency was maximal in 2:8 water–2,2,2-trifluoroethanol using 1 mol% of the catalyst in the presence of blue LED light under an oxygen atmosphere. Insignificant product formation was observed with the nonmetalated flavin moiety. A wide range of sulfides were used to explore the substrate scope.
Supporting Information
- Supporting information for
this article is available online at
https://doi.org/10.1055/a-1928-3417.
- Supporting Information
- CIF File
Publication History
Received: 06 June 2022
Accepted after revision: 19 August 2022
Accepted Manuscript online:
19 August 2022
Article published online:
28 September 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Briggs WR, Tseng T.-S, Cho H.-Y, Swartz TE, Sullivan S, Bogomolni RA, Kaiserli E, Christie JM. J. Integr. Plant Biol. 2007; 49: 4
- 1b Herrou J, Crosson S. Nat. Rev. Microbiol. 2011; 9: 713
- 2a Masuda S. Plant Cell Physiol. 2013; 54: 171
- 2b Zoltowski BD, Gardner KH. Biochemistry 2011; 50: 4
- 2c Losi A, Gartner W. Photochem. Photobiol. 2011; 87: 491
- 3 Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen L.-O, van der Horst GT. J, Batschauer A, Ahmad M. Annu. Rev. Plant Biol. 2011; 62: 335
- 4 Sancar A. Chem. Rev. 2003; 103: 2203
- 5a Baier J, Maisch T, Maier M, Engel E, Landthaler M, Bäumler W. Biophys. J. 2006; 91: 1452
- 5b Westberg M, Bregnhøj M, Etzerodt M, Ogilby PR. J. Phys. Chem. B 2017; 121: 2561
- 6 Baron R, Riley C, Chenprakhon P, Thotsaporn K, Winter RT, Alfieri A, Forneris F, van Berkel WH. J, Chaiyen P, Fraaije MW, Mattevi A, McCammon JA. Proc. Natl. Acad. Sci. U. S. A. 2009; 106: 10603
- 7 Meissner B, Schleicher E, Weber S, Essen L.-O. J. Biol. Chem. 2007; 282: 33142
- 8a König B, Kümmel S, Svobodová E, Cibulka R. Phys. Sci. Rev. 2018; 3: 20170168
- 8b Dongare P, MacKenzie I, Wang D, Nicewicz DA, Meyer TJ. Proc. Natl. Acad. Sci. U. S. A. 2017; 114: 9279
- 9 Daďová J, Kümmel S, Feldmeier C, Cibulková J, Pažout R, Maixner J, Gschwind RM, König B, Cibulka R. Chem. Eur. J. 2013; 19: 1066
- 10a Korvinson KA, Hargenrader GN, Stevanovic J, Xie Y, Joseph J, Maslak V, Hadad CM, Glusac KD. J. Phys. Chem. A 2016; 120: 7294
- 10b Dang C, Zhu L, Guo H, Xia H, Zhao J, Dick B. ACS Sustainable Chem. Eng. 2018; 6: 15254
- 11 Guo H, Xia H, Ma X, Chen K, Dang C, Zhao J, Dick B. ACS Omega 2020; 5: 10586
- 12 Shinkai S, Nakao H, Ueda K, Manabe M, Ohnishi M. Bull. Chem. Soc. Jpn. 1986; 59: 1632
- 13 Shinkai S, Nakao H, Ueda K, Manabe M. Tetrahedron Lett. 1984; 25: 5295
- 14 Fukuzumi S, Kuroda S, Tanaka T. J. Am. Chem. Soc. 1985; 107: 3020
- 15 Fukuzumi S, Yasui K, Suenobu T, Ohkubo K, Fujitsuka M, Ito O. J. Phys. Chem. A 2001; 105: 10501
- 16 Mühldorf B, Wolf R. Chem. Commun. 2015; 51: 8425
- 17 Mouli MS. S. V, Mishra AK. RSC Adv. 2022; 12: 3990
- 18 Fernández I, Khiar N. Chem. Rev. 2003; 103: 3651
- 19 Legros J, Dehli JR, Bolm C. Adv. Synth. Catal. 2005; 347: 19
- 20 Crisenza GE. M, Melchiorre P. Nat. Commun. 2020; 11: 803
- 21 Dad’ová J, Svobodová E, Sikorski M, König B, Cibulka R. ChemCatChem 2012; 4: 620
- 22 Neveselý T, Svobodová E, Chudoba J, Sikorski M, Cibulka R. Adv. Synth. Catal. 2016; 358: 1654
- 23 Flc-Sm To Flc (0.318 mmol) in a 25 mL round-bottomed flask was added MeOH (15 mL) followed by NaOAc (1.9 mmol) and Sm(NO3)3·6 H2O (0.636 mmol). The clear yellow solution was refluxed for 6 h until the reaction was complete (TLC). The resulting yellow precipitate was collected by filtration and washed sequentially with MeOH (30 mL) and Et2O (10 mL) then dried to give a dull-yellow solid; yield: 64%. 1H NMR (400 MHz, DMSO-d 6): δ = 8.63 (s, 1 H), 8.44 (s, 1 H), 8.02 (d, J = 6.7 Hz, 1 H), 4.55 (s, 2 H), 3.28 (s, 3 H), 1.74 (s, 2 H), 1.03 (t, J = 6.7 Hz, 3 H).
- 24 CCDC2175790 contains the supplementary crystallographic data for compound Flc-Sm. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 25a Torres J, Kremer C, Pardo H, Suescun L, Mombrú A, Castiglioni J, Domínguez S, Mederos A, Kremer E. J. Mol. Struct. 2003; 660: 99
- 25b Song Y, Yan B. J. Coord. Chem. 2005; 58: 817
- 26 Morozov IV, Serezhkin VN, Troyanov SI. Russ. Chem. Bull. 2008; 57: 439
- 27a Mouli MS. S. V, Mishra AK. J. Chem. Sci. 2022; 134: 59
- 27b Mouli MS. S. V, Mishra AK. CrystEngComm 2022; 24: 2221
- 28 Nehra K, Dalal A, Hooda A, Saini RK, Singh D, Kumar S. Polyhedron 2022; 217: 115730
- 29 Riboflavin Tetraacetate (RFTA) Riboflavin (1 g, 2.66 mmol) was dissolved in AcOH (30 mL) and Ac2O (30 mL). 70% HClO4 (1 mL) was added, and the mixture was heated at 40 °C for 1 h. H2O (100 mL) was then added and the mixture was extracted with CH2Cl2 (3 × 20 mL). The organic phase was dried (Na2SO4), filtered, and concentrated to 30 mL by rotary evaporation. The product was precipitated by adding cold anhyd Et2O (3 × 50 mL), collected by filtration, and dried to give an orange solid; yield: 90%. 1H NMR (400 MHz, CDCl3): δ = 9.08 (s, 1 H), 8.00 (s, 1 H), 7.57 (s, 1 H), 5.67 (d, J = 8.5 Hz, 1 H), 5.47–5.39 (m, 2 H), 4.44 (dd, J = 12.3, 2.7 Hz, 1 H), 4.25 (dd, J = 12.4, 5.7 Hz, 1 H), 2.57 (s, 3 H), 2.45 (s, 3 H), 2.29 (s, 3 H), 2.23 (s, 3 H), 2.08 (s, 3 H), 1.76 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 170.67, 170.35, 169.91, 169.76, 159.43, 154.78, 150.66, 148.11, 137.03, 136.04, 134.58, 132.85, 131.22, 115.59, 70.44, 69.43, 69.01, 61.88, 44.99, 21.46, 21.05, 20.80, 20.70, 20.34, 19.45.
- 30a Niemz A, Imbriglio J, Rotello VM. J. Am. Chem. Soc. 1997; 119: 887
- 30b Carroll JB, Jordan BJ, Xu H, Erdogan B, Lee L, Cheng L, Tiernan C, Cooke G, Rotello VM. Org. Lett. 2005; 7: 2551
- 31 Mouli MS. S. V, Agrawal HG, Tamrakar A, Tripathy SR, Pandey MD, Mishra AK. Luminescence 2022; in press
- 32 Catalytic Studies All catalytic reactions were carried out in glass vials. A vial was charged with Flc-Sm (1 mol%) [2 mol% was used in cases of Flc, RFTA, and Sm(NO3)3·6H2O to maintain an equimolar amount of flavin], and the appropriate solvent (2 mL; HPLC grade) was added. The appropriate sulfide (0.194 mmol) was then added and the vial was purged with O2. The mixture was stirred under a blue light under a sealed O2 atmosphere for 3 h. The yield of the sulfoxide product was determined by HPLC.
- 33 Bonesi SM, Albini A. J. Org. Chem. 2000; 65: 4532
- 34 Aldabbagh F, Bowman WR, Storey JM. D. The Investigation of Organic Reactions and Their Mechanisms . Maskill H. Blackwell; Oxford: 2006. Chap. 10 261
- 35a Baciocchi E, Giacco TD, Elisei F, Gerini MF, Guerra M, Lapi A, Liberali P. J. Am. Chem. Soc. 2003; 125: 16444
- 35b Bonesi SM, Fagnoni M, Albini A. Eur. J. Org. Chem. 2008; 2612
- 35c Baciocchi E, Crescenzi C, Lanzalunga O. Tetrahedron 1997; 53: 4469
- 35d Bonesi SM, Fagnoni M, Monti S, Albini A. Tetrahedron 2006; 62: 10716
- 35e Bonesi SM, Manet I, Freccero M, Fagnoni M, Albini A. Chem. Eur. J. 2006; 12: 4844