Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2023; 34(01): 81-85
DOI: 10.1055/a-1942-5695
DOI: 10.1055/a-1942-5695
letter
Special Edition Thieme Chemistry Journals Awardees 2022
Photocatalytic Desulfonylative Homocoupling of Benzylic Sulfone Derivatives
This work was supported by the Japan Society for the Promotion of Science (JSPS KAKENHI 21K05068 and 21H05390 to M.N.) and Amano Institute of Technology. JSPS and Nagoya University are acknowledged for funding of this research through The World Premier International Research Center Initiative (WPI) program.
Abstract
A desulfonylative homocoupling of benzylic sulfone derivatives through a photoredox Ir catalyst is described. The 3,5-bis(trifluoromethyl)phenyl group is an effective substituent on sulfonyl group in this reaction, providing the structurally diverse multiply arylated ethanes in good yields. The α-deuterated or α-fluorinated sulfones, which can be readily prepared by α-functionalization, were also applicable, highlighting an avenue to synthesize medicinally important structures.
Key words
desulfonylative homocoupling - sulfone - photoredox catalysis - multiply arylated alkanes - carbon–sulfonyl bond activationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1942-5695.
- Supporting Information
Publication History
Received: 11 August 2022
Accepted after revision: 13 September 2022
Accepted Manuscript online:
13 September 2022
Article published online:
11 October 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Nelson TD, Crouch RD. Org. React. 2004; 63: 265
- 1b Vasconcelos SN. S, Reis JS, de Oliveira IM, Balfour MN, Stefani HA. Tetrahedron 2019; 75: 1865
- 1c Retamosa M. deG, Döndas HA, Sobhani S, Nájera C, Yus MA, Sansano JM. Synthesis 2021; 53: 3653
- 2a Baur JA, Sinclair DA. Nat. Rev. Drug Discovery 2006; 5: 493
- 2b Barrett TN, Braddock DC, Monta A, Webb MR, White AJ. P. J. Nat. Prod. 2011; 74: 1980
- 2c Sumi K, Niko Y, Tokumaru K, Konishi G. Chem. Commun. 2013; 49: 3893
- 2d Zhang H, Zheng X, Xie N, He Z, Liu J, Leung NL. C, Niu Y, Huang X, Wong KS, Kwok RT. K, Sung HH. Y, Williams ID, Qin A, Lam JW. Y. Tang B. Z. J. Am. Chem. Soc. 2017; 139: 16264
- 3a Sato K, Inoue Y, Mori T, Sakaue A, Tarui A, Omote M, Kumadaki I, Ando A. Org. Lett. 2014; 16: 3756
- 3b Zhu Y, Xiong T, Han W, Shi Y. Org. Lett. 2014; 16: 6144
- 3c Park G, Yi SY, Jung J, Cho EJ, You Y. Chem. Eur. J. 2016; 22: 17790
- 3d Levin VV, Agababyan DP, Struchkova MI, Dilman AD. Synthesis 2018; 50: 2930
- 4 Cao Z.-C, Shi Z.-J. J. Am. Chem. Soc. 2017; 139: 6546
- 5a Sumiyama K, Toriumi N, Iwasawa N. Eur. J. Org. Chem. 2021; 2474
- 5b Pan F.-F, Guo P, Huang X, Shu X.-Z. Synthesis 2021; 53: 3094
- 6 Cao D, Li CC, Zeng H, Peng Y, Li CJ. Nat. Commun. 2021; 12: 3729
- 7 Ishida N, Son M, Kawasaki T, Ito M, Murakami M. Synlett 2021; 32: 2067
- 8a Trost BM. Bull Chem. Soc. Jpn. 1988; 61: 107
- 8b Costa A, Nájera C, Sansano JM. Synlett 2001; 1881
- 8c Ravelli D, Montanaro S, Zema M, Fagnoni M, Albini A. Adv. Synth. Catal. 2011; 353: 3295
- 8d Zheng B, Jia T, Walsh PJ. Org. Lett. 2013; 15: 1690
- 8e Trost BM, Kalnmals CA. Chem. Eur. J. 2019; 25: 11193
- 9a Lou J, Wang Q, Wu P, Wang H, Zhou YG, Yu Z. Chem. Soc. Rev. 2020; 49: 4307
- 9b Nambo M, Maekawa Y, Crudden CM. ACS Catal. 2022; 12: 3013
- 9c Corpas J, Kim-Lee S.-H, Mauleón P, Arrayas RG, Carretero JC. Chem. Soc. Rev. 2022; 51: 6774
- 10a Xuan J, Feng ZJ, Chen JR, Lu LQ, Xiao WJ. Chem. Eur. J. 2014; 20: 3045
- 10b Rong J, Deng L, Tan P, Ni C, Gu Y, Hu J. Angew. Chem. Int. Ed. 2016; 55: 2743
- 10c Nambo M, Tahara Y, Yim JC, Yokogawa D, Crudden CM. Chem. Sci. 2021; 12: 4866
- 10d Sengoku T, Ogawa D, Iwama H, Inuzuka T, Yoda H. Chem. Commun. 2021; 57: 9858
- 10e Patel S, Paul B, Paul H, Shankhdhar R, Chatterjee I. Chem. Commun. 2022; 58: 4857
- 10f Nambo M, Ghosh K, Yim JC.-H, Tahara Y, Inai N, Yanai T, Crudden CM. ACS Catal. 2022; 12: 9526
- 11a Nambo M, Crudden CM. Angew. Chem. Int. Ed. 2014; 53: 742
- 11b Nambo M, Keske EC, Rygus JP. G, Yim JC, Crudden CM. ACS Catal. 2017; 7: 1108
- 11c Ariki ZT, Maekawa Y, Nambo M, Crudden CM. J. Am. Chem. Soc. 2018; 140: 78
- 11d Nambo M, Yim JC, Freitas LB. O, Tahara Y, Ariki ZT, Maekawa Y, Yokogawa D, Crudden CM. Nat. Commun. 2019; 10: 4528
- 12a Prier CK, Rankic DA, MacMillan DW. Chem. Rev. 2013; 113: 5322
- 12b Koike T, Akita M. Inorg. Chem. Front. 2014; 1: 562
- 12c Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 12d Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
- 12e Cai B.-G, Xuan J, Xiao W.-J. Sci. Bull. 2019; 64: 337
- 12f Xuan J, He X.-K, Xiao W.-J. Chem. Soc. Rev. 2020; 49: 2546
- 13a Wang J, Sanchez-Rosello M, Acena JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
- 13b Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J. Med. Chem. 2015; 58: 8315
- 13c Atzrodt J, Derdau V, Kerr WJ, Reid M. Angew. Chem. Int. Ed. 2018; 57: 1758
- 13d Yang X, Ben H, Ragauskas AJ. Asian J. Org. Chem. 2021; 10: 2473
- 13e Kopf S, Bourriquen F, Li W, Neumann H, Junge K, Beller M. Chem. Rev. 2022; 122: 6634
- 14a Sawama Y, Kawajiri T, Niikawa M, Goto R, Yabe Y, Takahashi T, Marumoto T, Itoh M, Kimura Y, Monguchi Y, Kondo S, Sajiki H. ChemSusChem 2015; 8: 3773
- 14b Cummings SP, Le TN, Fernandez GE, Quiambao LG, Stokes BJ. J. Am. Chem. Soc. 2016; 138: 6107
- 14c Wang Y, Huang Z, Leng X, Zhu H, Liu G, Huang Z. J. Am. Chem. Soc. 2018; 140: 4417
- 14d Stegner P, Farber C, Zenneck U, Knupfer C, Eyselein J, Wiesinger M, Harder S. Angew. Chem. Int. Ed. 2021; 60: 4252
- 15a Patrick TB, Qian S. Org. Lett. 2000; 2: 3359
- 15b Zhu J, Ni C, Gao B, Hu J. J. Fluorine Chem. 2015; 171: 139
- 15c Saijo H, Ohashi M, Ogoshi S. J. Am. Chem. Soc. 2014; 136: 15158
- 15d Wade Wolfe MM, Shanahan JP, Kampf JW, Szymczak NK. J. Am. Chem. Soc. 2020; 142: 18698
- 15e Luo YC, Tong FF, Zhang Y, He CY, Zhang X. J. Am. Chem. Soc. 2021; 143: 13971
- 16 Procedure for Desulfonylative Homocoupling of Benzhydryl Sulfone 6a A 10 mL sealable reaction tube equipped with a magnetic stirring bar and a septum was evacuated, flame-dried under vacuum, cooled to room temperature, and backfilled with Ar. To the glass vessel were added benzhydryl 3,5-bis(trifluoromethyl)phenyl sulfone (6a, 133 mg, 0.3 mmol) and Ir(ppy)3 (2.0 mg, 0.003 mmol). The mixture was evacuated under vacuum and refilled with Ar. This cycle was repeated two additional times. Under an Ar atmosphere, acetone (1.5 mL), degassed H2O (0.15 mL), and i-Pr2NEt (105 μL, 0.6 mmol) were added, and the reaction was sealed and stirred under irradiation (Kessil® PR 160, 456 nm) for 17 h. The solvent was removed under reduced pressure and diluted with EtOAc. The mixture was passed through a pad of silica gel with copious washings with EtOAc (ca. 50 mL). The filtrate was concentrated under reduced pressure. The crude product was purified by PTLC (EtOAc–Hex = 1:100 to 1:50) to afford 1,1,2,2-tetraphenylethane (7a, 48.0 mg, 96%) as a white solid. 1H NMR (400 MHz, CDCl3): δ = 4.77 (s, 2 H), 6.99–7.03(m, 4 H), 7.09–7.17 (m, 16 H). 13C NMR (150 MHz, CDCl3): δ = 56.3, 125.8, 128.1, 128.5, 127.4, 143.4. HRMS (DART) m/z calcd for C26H21 [M – H]+: 333.1643; found: 333.1637.
Reviews:
Recent examples of catalytic homocoupling of benzylic halides or organometallic reagents, see:
Reviews:
Selected examples of radical functionalization using organosulfones, see:
Reviews of visible-light photoredox catalysis:
Reviews:
For examples of synthesis of deuterated derivatives, see:
For examples of synthesis of fluorinated derivatives, see: