Aktuelle Rheumatologie 2022; 47(06): 478-482
DOI: 10.1055/a-1947-5200
Übersichtsarbeit

Thromboinflammation: Dynamik physiologischer und pathologischer Wechselwirkungen von Entzündung und Koagulation

Thromboinflammation: Dynamics of Physiological and Pathological Interactions between Inflammation and Coagulation
1   Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin Campus Charité Mitte, Berlin, Germany
2   Autoimmunity, DRFZ, Berlin, Germany
,
Eduard Nitschke
1   Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin Campus Charité Mitte, Berlin, Germany
2   Autoimmunity, DRFZ, Berlin, Germany
,
Thomas Dörner
1   Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin Campus Charité Mitte, Berlin, Germany
2   Autoimmunity, DRFZ, Berlin, Germany
› Author Affiliations

Zusammenfassung

Das konzertante Zusammenspiel zwischen endothelialer Dysfuntion, aktivierten Thrombozyten und anderen Immunzellen sowie simultaner Komplementaktivierung führt zur Aktivierung und gegenseitigen Verstärkung sowohl der Immunantwort als auch der Gerinnungskaskade. Durch die unkontrollierte Fortdauer dieser physiologischen Mechanismen kann der pathologische Prozess der Thromboinflammation induziert werden. In dieser Übersichtsarbeit fassen wir grundlegende Mechanismen zusammen, die zur Thromboinflammation als ein Auslöser von venösen Thromboembolien führen.

Abstract

The orchestral interaction between endothelial dysfunction, activated thrombocytes and other immune cells as well as the concomitant activation of complement lead to simultaneous activation of the immune system and coagulation. An uncontrolled persistence of these physiological mechanisms can induce pathological processes of thromboinflammation. This review article aims to summarise mechanisms leading to thromboinflammation as a cause of venous thromboembolism.



Publication History

Article published online:
02 November 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Hoppe B, Dörner T. Coagulation and the fibrin network in rheumatic disease: a role beyond haemostasis. Nature Reviews Rheumatology 2012; 8: 738-746
  • 2 Jeon BH. Endothelial Dysfunction: From Pathophysiology to Novel Therapeutic Approaches. Biomedicines 2021; 9: 1571
  • 3 Lee JJ, Pope JE. A meta-analysis of the risk of venous thromboembolism in inflammatory rheumatic diseases. Arthritis Res Ther 2014; 16: 435
  • 4 Agca R, Heslinga SC, Rollefstad S. et al. EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Annals of the Rheumatic Diseases 2017; 76: 17-28
  • 5 Ozen G, Pedro S, Michaud K. The risk of cardiovascular events associated with disease-modifying antirheumatic drugs in rheumatoid arthritis. The Journal of Rheumatology. 2020 jrheum.200265
  • 6 Drakopoulou M, Soulaidopoulos S, Oikonomou G. et al. Cardiovascular Effects of Biologic Disease-Modifying Anti-Rheumatic Drugs (DMARDs). Curr Vasc Pharmacol 2020; 18: 488-506
  • 7 Peerschke EI, Yin W, Grigg SE. et al. Blood platelets activate the classical pathway of human complement. Journal of Thrombosis and Haemostasis 2006; 4: 2035-2042
  • 8 Andonegui G, Kerfoot SM, McNagny K. et al. Platelets express functional Toll-like receptor-4. Blood 2005; 106: 2417-2423
  • 9 Cognasse F, Duchez AC, Audoux E. et al. Platelets as Key Factors in Inflammation: Focus on CD40L/CD40. Front Immunol 2022; 13: 825892
  • 10 Rolfes V, Idel C, Pries R. et al. PD-L1 is expressed on human platelets and is affected by immune checkpoint therapy. Oncotarget 2018; 9: 27460-27470
  • 11 Rolfes V, Ribeiro LS, Hawwari I. et al. Platelets Fuel the Inflammasome Activation of Innate Immune Cells. Cell Rep 2020; 31: 107615
  • 12 Lindemann S, Tolley ND, Dixon DA. et al. Activated platelets mediate inflammatory signaling by regulated interleukin 1beta synthesis. J Cell Biol 2001; 154: 485-490
  • 13 Boilard E, Blanco P, Nigrovic PA. Platelets: active players in the pathogenesis of arthritis and SLE. Nat Rev Rheumatol 2012; 8: 534-542
  • 14 Duffau P, Seneschal J, Nicco C. et al. Platelet CD154 potentiates interferon-alpha secretion by plasmacytoid dendritic cells in systemic lupus erythematosus. Sci Transl Med 2010; 2: 47ra63
  • 15 Greinacher A. Heparin-Induced Thrombocytopenia. New England Journal of Medicine 2015; 373: 252-261
  • 16 Salih F, Schönborn L, Kohler S. et al. Vaccine-Induced Thrombocytopenia with Severe Headache. N Engl J Med 2021; 385: 2103-2105
  • 17 von Brühl ML, Stark K, Steinhart A. et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 2012; 209: 819-835
  • 18 Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol 2018; 18: 134-147
  • 19 Renné T, Gailani D. Role of Factor XII in hemostasis and thrombosis: clinical implications. Expert Rev Cardiovasc Ther 2007; 5: 733-741
  • 20 Gremese E, Ferraccioli G. The pathogenesis of microthrombi in COVID-19 cannot be controlled by DOAC: NETosis should be the target. Journal of Internal Medicine 2021; 289: 420-421
  • 21 Girardi G, Redecha P, Salmon JE. Heparin prevents antiphospholipid antibody-induced fetal loss by inhibiting complement activation. Nat Med 2004; 10: 1222-1226
  • 22 Lee KH, Kronbichler A, Park DD. et al. Neutrophil extracellular traps (NETs) in autoimmune diseases: A comprehensive review. Autoimmun Rev 2017; 16: 1160-1173
  • 23 Pérez-Sánchez C, Ruiz-Limón P, Aguirre MA. et al. Diagnostic potential of NETosis-derived products for disease activity, atherosclerosis and therapeutic effectiveness in Rheumatoid Arthritis patients. Journal of Autoimmunity 2017; 82: 31-40
  • 24 Angeletti A, Volpi S, Bruschi M. et al. Neutrophil Extracellular Traps-DNase Balance and Autoimmunity. Cells 2021; 10: 2667
  • 25 Schmidt CQ, Schrezenmeier H, Kavanagh D. Complement and the prothrombotic state. Blood 2022; 139: 1954-1972
  • 26 de Bont CM, Boelens WC, Pruijn GJM. NETosis, complement, and coagulation: a triangular relationship. Cell Mol Immunol 2019; 16: 19-27
  • 27 Sontheimer RD, Racila E, Racila DM. C1q: Its Functions within the Innate and Adaptive Immune Responses and its Role in Lupus Autoimmunity. Journal of Investigative Dermatology 2005; 125: 14-23
  • 28 Chaturvedi S, Braunstein EM, Brodsky RA. Antiphospholipid syndrome: Complement activation, complement gene mutations, and therapeutic implications. J Thromb Haemost 2021; 19: 607-616
  • 29 Asakura H, Ogawa H. COVID-19-associated coagulopathy and disseminated intravascular coagulation. Int J Hematol 2021; 113: 45-57
  • 30 Kruse JM, Zickler D, Lüdemann WM. et al. Evidence for a thromboembolic pathogenesis of lung cavitations in severely ill COVID-19 patients. Sci Rep 2021; 11: 16039
  • 31 Mehta P, McAuley DF, Brown M. et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395: 1033-1034
  • 32 Bradley BT, Maioli H, Johnston R. et al. Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington State: a case series. Lancet. 2020; 396: 320-332
  • 33 Gauchel N, Krauel K, Hamad MA. et al. Thromboinflammation as a Driver of Venous Thromboembolism. Hamostaseologie 2021; 41: 428-432
  • 34 Siguret V, Voicu S, Neuwirth M. et al. Are antiphospholipid antibodies associated with thrombotic complications in critically ill COVID-19 patients?. Thromb Res 2020; 195: 74-76
  • 35 Zuo Y, Estes SK, Ali RA. et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Science Translational Medicine 2020; 12 eabd3876
  • 36 Abdel-Wahab N, Talathi S, Lopez-Olivo MA. et al. Risk of developing antiphospholipid antibodies following viral infection: a systematic review and meta-analysis. Lupus 2018; 27: 572-583