Subscribe to RSS
DOI: 10.1055/a-1948-5493
Enantioselective β-Selective Addition of Isoxazolidin-5-ones to Allenoates Catalyzed by Quaternary Ammonium Salts
This work was generously supported by the Austrian Science Funds (FWF) Project P31784. The used NMR spectrometers were acquired in collaboration with the University of South Bohemia (CZ) with financial support from the European Union through the EFRE INTERREG IV ETC-AT-CZ program (project M00146, ‘RERI-uasb’). J.P. was supported from European Regional Development Fund Project ‘Centre for Experimental Plant Biology’ (No. CZ.02.1.01/0.0/0.0/16_019/0000738).
Dedicated to Prof. Cristina Nevado on the occasion of her reception of the 2021 Dr. Margaret Faul Women in Chemistry Award (and thanks for being one of the best friends one can imagine ever since we wrestled with the Iejimalides Cris!!).
Abstract
The enantioselective addition of isoxazolidin-5-ones to the β-carbon of allenoates has been carried out by using a novel spirobiindane-based quaternary ammonium salt catalyst. This protocol, which proceeds under classical liquid-solid phase-transfer conditions, gives access to unprecedented highly functionalized β2,2-amino acid derivatives with good enantioselectivities and in high yields, and further manipulations of these products have been carried out as well.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1948-5493.
- Supporting Information
Publication History
Received: 09 August 2022
Accepted: 21 September 2022
Accepted Manuscript online:
21 September 2022
Article published online:
27 October 2022
© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Amino Acids, Peptides and Proteins in Organic Chemistry, Vol. 1–5. Hughes AB. Wiley-VCH; Weinheim: 2009
- 2a Lang K, Chin JW. Chem. Rev. 2014; 114: 4764
- 2b Blaskovich MA. T. J. Med. Chem. 2016; 59: 10807
- 2c Narancic T, Almahboub SA, O’Connor KE. World J. Microbiol. Biotechnol. 2019; 35: 67
- 3a Asymmetric Synthesis and Application of α-Amino Acids . Soloshonok VA, Izawa K. American Chemical Society; Washington DC: 2009
- 3b α-Amino Acid Synthesis, Tetrahedron Symposia-in-Print, No. 33. O’Donnell MJ. Pergamon; Oxford: 1988
- 3c Najera C, Sansano JM. Chem. Rev. 2007; 107: 4584
- 3d Metz AE, Kozlowski MC. J. Org. Chem. 2015; 80: 1
- 3e Vogt H, Bräse S. Org. Biomol. Chem. 2007; 5: 406
- 3f Cativiela C, Ordonez M. Tetrahedron: Asymmetry 2009; 20: 1
- 4a Juaristi E, Lopez-Ruiz H. Curr. Med. Chem. 1999; 6: 983
- 4b Abele S, Seebach D. Eur. J. Org. Chem. 2000; 1
- 4c Enantioselective Synthesis of β-Amino Acids, 2nd ed. Juaristi E, Soloshonok VA. Wiley; New York: 2005
- 4d Weiner B, Szymanski W, Janssen DB, Minnaard AJ, Feringa BL. Chem. Soc. Rev. 2010; 39: 1656
- 4e Ashfaq M, Tabassum R, Ahmad MM, Hassan NA, Oku H, Rivera G. Med. Chem. 2015; 5: 295
- 4f Noda H, Shibasaki M. Eur. J. Org. Chem. 2020; 2350
- 5a Cheng RP, Gellman SH, DeGrado WF. Chem. Rev. 2001; 101: 3219
- 5b Lelais G, Seebach D. Biopolymers 2004; 76: 206
- 5c Seebach D, Gardiner J. Acc. Chem. Res. 2008; 41: 1366
- 5d Seebach D, Beck AK, Capone S, Deniau G, Grošelj U, Zass E. Synthesis 2009; 1
- 5e Cabrele C, Martinek TA, Reiser O, Berlicki Ł. J. Med. Chem. 2014; 57: 9718
- 6 Tite T, Sabbah M, Levacher V, Brière J.-F. Chem. Commun. 2013; 49: 11569
- 7a Annibaletto J, Oudeyer S, Levacher V, Brière J.-F. Synthesis 2017; 49: 2117
- 7b Macchia A, Eitzinger A, Brière J.-F, Waser M, Massa A. Synthesis 2021; 53: 107
- 7c Noda H. Chem. Pharm. Bull. 2021; 69: 1160
- 8a Cadart T, Levacher V, Perrio S, Brière J.-F. Adv. Synth. Catal. 2018; 360: 1499
- 8b Yu J.-S, Noda H, Shibasaki M. Angew. Chem. Int. Ed. 2018; 57: 818
- 8c Nascimento de Oliveira M, Arseniyadis S, Cossy J. Chem. Eur. J. 2018; 24: 4810
- 8d Yu J.-S, Noda H, Shibasaki M. Chem. Eur. J. 2018; 24: 15796
- 8e Amemiya F, Noda H, Shibasaki M. Chem. Pharm. Bull. 2019; 67: 1046
- 9a Capaccio V, Zielke K, Eitzinger A, Massa A, Palombi L, Faust K, Waser M. Org. Chem. Front. 2018; 5: 3336
- 9b Eitzinger A, Winter M, Schörgenhumer J, Waser M. Chem. Commun. 2020; 56: 579
- 10a Cadart T, Berthonneau C, Levacher V, Perrio S, Brière J.-F. Chem. Eur. J. 2016; 22: 15261
- 10b Capaccio V, Sicignano M, Rodríguez RI, Della Sala G, Alemán J. Org. Lett. 2020; 22: 219
- 11a Eitzinger A, Brière JF, Cahard D, Waser M. Org. Biomol. Chem. 2020; 18: 405
- 11b Zebrowski P, Eder I, Eitzinger A, Mallojjala SC, Waser M. ACS Org. Inorg. Au 2022; 2: 34
- 11c Haider V, Zebrowski P, Michalke J, Monkowius U, Waser M. Org. Biomol. Chem. 2022; 20: 824
- 12a Wang K, Yu J, Shao Y, Tang S, Sung J. Angew. Chem. Int. Ed. 2020; 59: 23516
- 12b Tovillas P, Navo CD, Oroz P, Avenoza A, Corzana F, Zurbano MM, Jimenez-Oses G, Busto JH, Peregrina JM. J. Org. Chem. 2022; 87: 8730
- 13a Yu J.-S, Espinosa M, Noda H, Shibasaki M. J. Am. Chem. Soc. 2019; 141: 10530
- 13b Espinosa M, Noda H, Shibasaki M. Org. Lett. 2019; 21: 9296
- 14a Shirakawa S, Maruoka K. Angew. Chem. Int. Ed. 2013; 52: 4312
- 14b Tan J, Yasuda N. Org. Process Res. Dev. 2015; 19: 1731
- 14c Kaneko S, Kumatabara Y, Shirakawa S. Org. Biomol. Chem. 2016; 14: 5367
- 14d Qian D, Sun J. Chem. Eur. J. 2019; 25: 3740
- 15a Li X, Zhang C, Xu Z. Acc. Chem. Res. 2001; 34: 535
- 15b Ma S. Chem. Rev. 2005; 105: 2829
- 15c Cowen BJ, Miller SJ. Chem. Soc. Rev. 2009; 38: 3102
- 15d Yu S, Ma S. Angew. Chem. Int. Ed. 2012; 51: 3074
- 15e Fan YC, Kwon O. Chem. Commun. 2013; 49: 11588
- 15f Xiao Y, Sung Z, Guo H, Kwon O. Beilstein J. Org. Chem. 2014; 10: 2089
- 15g Wang Z, Xu X, Kwon O. Chem. Soc. Rev. 2014; 43: 2927
- 15h Li E.-Q, Huang Y. Chem. Commun. 2020; 56: 680
- 16 An F, Jangra H, Wie Y, Shi M, Zipse H, Ofial AR. Chem. Commun. 2022; 58: 3358
- 17a Paik YH, Dowd P. J. Org. Chem. 1986; 51: 2910
- 17b Ma S, Yu S, Yin S. J. Org. Chem. 2003; 23: 8996
- 17c Ma S, Yu S, Qian W. Tetrahedron 2005; 61: 4157
- 17d Shu L, Wang P, Gu C, Liu W, Alabanza LM, Zhang Y. Org. Process Res. Dev. 2013; 17: 651
- 17e Vaishanv NK, Zaheer MK, Kant R, Mohanan K. Eur. J. Org. Chem. 2019; 6138
- 17f Liu Y.-Y, Wang X.-P, Wei J, Li Y. Tetrahedron 2022; 103: 132577
- 18 For a pioneering chiral ammonium salt-catalyzed enantioselective β-addition of different pronucleophiles to allenoates, see: Elsner P, Bernardi L, Dela Salla G, Overgaard J, Jørgensen KA. J. Am. Chem. Soc. 2008; 130: 4897
- 19a Jin N, Misaki T, Sugimura T. Chem. Lett. 2013; 42: 894
- 19b Uraguchi D, Kawai Y, Sasaki H, Yamada K, Ooi T. Chem. Lett. 2018; 47: 594
- 20 Ooi T, Kameda M, Maruoka K. J. Am. Chem. Soc. 1999; 121: 6519
- 21 For a recent application of these catalysts, see: Mairhofer C, Novacek J, Waser M. Org. Lett. 2020; 22: 6138
- 22 Lygo B, Allbutt B, James SR. Tetrahedron Lett. 2003; 44: 5629
- 23a Gu H, Han Z, Xie H, Lin X. Org. Lett. 2018; 20: 6544
- 23b Zhou Q, Pan R, Shan H, Lin X. Synthesis 2019; 51: 557
- 24 Further details, characterization of intermediates and other derivatives, and copies of NMR spectra and HPLC traces can be found in the online Supporting Information.
- 25a Xu C, Qi Y, Yang X, Li X, Li Z, Bai L. Org. Lett. 2021; 23: 2890
- 25b Xu C, Yang X. Synlett 2022; 33: 664
- 26 CCDC 2194262 (E1) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 27a Bode JW, Fox RM, Baucom KD. Angew. Chem. Int. Ed. 2006; 45: 1248
- 27b Wucherpfennig TG, Pattabiraman VR, Limberg J, Ruiz-Rodriguez FR. P, Bode JW. Angew. Chem. Int. Ed. 2014; 53: 12248
For 3 illustrative overviews underscoring the potential of non-natural amino acids, see:
For illustrative reviews on asymmetric α-AA syntheses, see:
Selected overviews on asymmetric β-AA syntheses:
For C–C forming approaches by other groups, see:
For C–C forming approaches by our group, see:
For heterofunctionalizations by other groups, see:
For heterofunctionalizations by our group, see:
For two recent alternative strategies to access β2,2-AA, see:
For selected reviews, see:
For general overviews on the reactivity of allenoates, see:
For selected racemic β-additions of enolate species to preformed allenoates, see:
For organobase-catalyzed enantioselective β-additions of enolate equivalents to allenoates, see: