Synlett 2023; 34(01): 73-76
DOI: 10.1055/a-1948-6798
letter

Zinc-Catalyzed Markovnikov-Type Hydroisothiocyanation of Alkenes with Ammonium Thiocyanate

a   Department of Chemistry, Faculty of Liberal Arts, Sciences and Global Education, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
› Author Affiliations
This work was supported by Daicel Corporation.


Abstract

A ZnI2-catalyzed addition of ammonium thiocyanate to olefins in the presence of 4-toluenesulfonic acid and tetrabutylammonium iodide has been developed. The reaction proceeds by a Markovnikov-type process and a radical isomerization, and gives the corresponding isothiocyanates selectively and in good yields.

Supporting Information



Publication History

Received: 21 August 2022

Accepted after revision: 21 September 2022

Accepted Manuscript online:
21 September 2022

Article published online:
31 October 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Hou D.-X, Fukuda M, Fujii M, Fuke Y. Cancer Lett. 2000; 161: 195
    • 1b Fahey JW, Talalay P. Food Chem. Toxicol. 1999; 37: 973
    • 1c Posner GH, Cho CG, Green JV, Zhang Y, Talalay P. J. Med. Chem. 1994; 37: 170
  • 2 Mukerjee AK, Ashare R. Chem. Rev. 1991; 91: 1
    • 3a Scattolin T, Klein A, Schoenebeck F. Org. Lett. 2017; 19: 1831
    • 3b Rong H.-J, Chen T, Xu Z.-G, Su T.-D, Shang Y, Wang Y.-Q, Yang C.-F. Tetrahedron Lett. 2021; 68: 152868
    • 3c Gottfried RA. Angew. Chem. Int. Ed. 1966; 5: 963
    • 3d Jiang C, Chen P, Liu G. CCS Chem. 2021; 3: 1884; DOI: 10.31635/ccschem.020.202000435.
    • 3e Fu Z, Yuan W, Chen N, Yang Z, Xu J. Green Chem. 2018; 20: 4484
  • 4 Zhang S, Li Y, Wang T, Li M, Wen L, Guo W. Org. Lett. 2022; 24: 1742
  • 5 Miyake H, Nakano Y, Sasaki M. Chem. Lett. 2006; 35: 1262
  • 6 Luskin LS, Gantert GE, Craig WE. J. Am. Chem. Soc. 1956; 78: 4965
    • 7a Wu C, Lu L.-H, Peng A.-Z, Jia G.-K, Peng C, Cao Z, Tang Z, He W.-M, Xu X. Green Chem. 2018; 20: 3683
    • 7b Dwivedi V, Rajesh M, Kumar R, Kant R, Reddy MS. Chem. Commun. 2017; 53: 11060
    • 7c Qi L, Liu S, Xiao L. RSC Adv. 2020; 10: 33450
    • 7d Taniguchi N. Tetrahedron 2009; 65: 2782
    • 8a Kitson TM. Biochem. Educ. 1985; 13: 85

    • For a theorical study, see:
    • 8b Gronowski M, Turowski M, Custer T, Kołos R. Theor. Chem. Acc. 2016; 135: 222
    • 10a Moriya H, Sekine T. Bull. Chem. Soc. Jpn. 1971; 44: 3347
    • 10b Đaković M, Popović Z, Giester G, Rajić-Linarić M. Polyhedron 2008; 27: 465
    • 10c Wöhlert S, Jess I, Englert U, Näther C. CrystEngComm 2013; 15: 5326
  • 11 Smith PA. S, Emerson DW. J. Am. Chem. Soc. 1960; 82: 3076
  • 12 (2-Isothiocyanatoethyl)benzene (2a); 5 Typical Procedure ZnI2 (9.6 mg, 0.03 mmol) was added to a mixture of styrene (31.2 mg, 0.3 mmol), NH4SCN (25.1 mg, 0.33 mmol), and Bu4NI (22.2 mg, 0.06 mmol) in DCE (1.0 mL), and the mixture was stirred at 80 °C for 18 h. The residue was dissolved in Et2O and the solution was washed with H2O and sat. aq NaCl, dried (MgSO4), and purified by TLC (silica gel, hexane) to give a colorless liquid; yield: 39.3 mg (80%). 1H NMR (400 MHz, CDCl3): δ = 7.40–7.37 (m, 2 H), 7.34–7.31 (m, 3 H), 4.91 (q, J = 7.0 Hz, 1 H), 1.67 (d, J = 7.0 Hz, 3 H). 13C{1H} NMR (100 MHz, CDCl3): δ = 140.1, 132.0, 128.9, 128.2, 125.4, 57.0, 25.0.
  • 13 2-Phenylethyl Thiocyanate (3a);3d Typical Procedure ZnI2 (9.6 mg, 0.03 mmol) was added to a mixture of styrene (1a; 31.2 mg, 0.3 mmol), NH4SCN (25.1 mg, 0.33 mmol), and Bu4NI (22.2 mg, 0.06 mmol) in DCE (1.0 mL), and the mixture was stirred at 40 °C for 18 h. The residue was dissolved in Et2O, the solution was washed with H2O and sat. aq NaCl, dried (MgSO4), and purified by TLC (silica gel, 5% Et2O–hexane) to give a colorless liquid; yield: 26.3 mg (54%). 1H NMR (500 MHz, CDCl3): δ = 7.40–7.35 (m, 5 H), 4.61 (q, J = ­7.3 Hz, 1 H), 1.88 (d, J = 7.3 Hz, 3 H). 13C{1H} NMR (125 MHz, CDCl3): δ = 139.0, 129.1, 129.0, 127.1, 111.7, 48.5, 22.0.