Synlett, Inhaltsverzeichnis Synlett 2023; 34(01): 73-76DOI: 10.1055/a-1948-6798 letter Zinc-Catalyzed Markovnikov-Type Hydroisothiocyanation of Alkenes with Ammonium Thiocyanate Nobukazu Taniguchi ∗ a Department of Chemistry, Faculty of Liberal Arts, Sciences and Global Education, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan › Institutsangaben Artikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Abstract A ZnI2-catalyzed addition of ammonium thiocyanate to olefins in the presence of 4-toluenesulfonic acid and tetrabutylammonium iodide has been developed. The reaction proceeds by a Markovnikov-type process and a radical isomerization, and gives the corresponding isothiocyanates selectively and in good yields. Key words Key wordszinc catalysis - Markovnikov reaction - isothiocyanates - thiocyanates - alkenes - isomerization Volltext Referenzen References and Notes 1a Hou D.-X, Fukuda M, Fujii M, Fuke Y. Cancer Lett. 2000; 161: 195 1b Fahey JW, Talalay P. Food Chem. Toxicol. 1999; 37: 973 1c Posner GH, Cho CG, Green JV, Zhang Y, Talalay P. J. Med. Chem. 1994; 37: 170 2 Mukerjee AK, Ashare R. Chem. Rev. 1991; 91: 1 3a Scattolin T, Klein A, Schoenebeck F. Org. Lett. 2017; 19: 1831 3b Rong H.-J, Chen T, Xu Z.-G, Su T.-D, Shang Y, Wang Y.-Q, Yang C.-F. Tetrahedron Lett. 2021; 68: 152868 3c Gottfried RA. Angew. Chem. Int. Ed. 1966; 5: 963 3d Jiang C, Chen P, Liu G. CCS Chem. 2021; 3: 1884; 3e Fu Z, Yuan W, Chen N, Yang Z, Xu J. Green Chem. 2018; 20: 4484 4 Zhang S, Li Y, Wang T, Li M, Wen L, Guo W. Org. Lett. 2022; 24: 1742 5 Miyake H, Nakano Y, Sasaki M. Chem. Lett. 2006; 35: 1262 6 Luskin LS, Gantert GE, Craig WE. J. Am. Chem. Soc. 1956; 78: 4965 7a Wu C, Lu L.-H, Peng A.-Z, Jia G.-K, Peng C, Cao Z, Tang Z, He W.-M, Xu X. Green Chem. 2018; 20: 3683 7b Dwivedi V, Rajesh M, Kumar R, Kant R, Reddy MS. Chem. Commun. 2017; 53: 11060 7c Qi L, Liu S, Xiao L. RSC Adv. 2020; 10: 33450 7d Taniguchi N. Tetrahedron 2009; 65: 2782 8a Kitson TM. Biochem. Educ. 1985; 13: 85 For a theorical study, see: 8b Gronowski M, Turowski M, Custer T, Kołos R. Theor. Chem. Acc. 2016; 135: 222 9a Taniguchi N. J. Org. Chem. 2020; 85: 6528 9b Taniguchi N. ARKIVOC 2021; (iii): 125 10a Moriya H, Sekine T. Bull. Chem. Soc. Jpn. 1971; 44: 3347 10b Đaković M, Popović Z, Giester G, Rajić-Linarić M. Polyhedron 2008; 27: 465 10c Wöhlert S, Jess I, Englert U, Näther C. CrystEngComm 2013; 15: 5326 11 Smith PA. S, Emerson DW. J. Am. Chem. Soc. 1960; 82: 3076 12 (2-Isothiocyanatoethyl)benzene (2a); 5 Typical Procedure ZnI2 (9.6 mg, 0.03 mmol) was added to a mixture of styrene (31.2 mg, 0.3 mmol), NH4SCN (25.1 mg, 0.33 mmol), and Bu4NI (22.2 mg, 0.06 mmol) in DCE (1.0 mL), and the mixture was stirred at 80 °C for 18 h. The residue was dissolved in Et2O and the solution was washed with H2O and sat. aq NaCl, dried (MgSO4), and purified by TLC (silica gel, hexane) to give a colorless liquid; yield: 39.3 mg (80%). 1H NMR (400 MHz, CDCl3): δ = 7.40–7.37 (m, 2 H), 7.34–7.31 (m, 3 H), 4.91 (q, J = 7.0 Hz, 1 H), 1.67 (d, J = 7.0 Hz, 3 H). 13C{1H} NMR (100 MHz, CDCl3): δ = 140.1, 132.0, 128.9, 128.2, 125.4, 57.0, 25.0. 13 2-Phenylethyl Thiocyanate (3a);3d Typical Procedure ZnI2 (9.6 mg, 0.03 mmol) was added to a mixture of styrene (1a; 31.2 mg, 0.3 mmol), NH4SCN (25.1 mg, 0.33 mmol), and Bu4NI (22.2 mg, 0.06 mmol) in DCE (1.0 mL), and the mixture was stirred at 40 °C for 18 h. The residue was dissolved in Et2O, the solution was washed with H2O and sat. aq NaCl, dried (MgSO4), and purified by TLC (silica gel, 5% Et2O–hexane) to give a colorless liquid; yield: 26.3 mg (54%). 1H NMR (500 MHz, CDCl3): δ = 7.40–7.35 (m, 5 H), 4.61 (q, J = 7.3 Hz, 1 H), 1.88 (d, J = 7.3 Hz, 3 H). 13C{1H} NMR (125 MHz, CDCl3): δ = 139.0, 129.1, 129.0, 127.1, 111.7, 48.5, 22.0. Zusatzmaterial Zusatzmaterial Supporting Information