Klin Monbl Augenheilkd 2022; 239(12): 1440-1446
DOI: 10.1055/a-1953-7302
Experimentelle Studie

The Rostock Method for Qualitative and Quantitative Evaluation of Intraocular Lenses

Article in several languages: deutsch | English
1   Klinik und Poliklinik für Augenheilkunde, Universitätsmedizin Rostock, Deutschland
2   Interdisziplinäre Fakultät Leben, Licht & Materie, Universität Rostock, Deutschland
,
Jan Sievers
3   Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Halle, Deutschland
,
Martin Kunert
4   Klinik für Augenheilkunde, Dietrich-Bonhoeffer-Klinikum Neubrandenburg, Deutschland
,
Stefan Reiss
5   Labor für Sehhilfen – Bereich Optik und Technik der Brille, Berliner Hochschule für Technik, Berlin, Deutschland
,
Sebastian Bohn
1   Klinik und Poliklinik für Augenheilkunde, Universitätsmedizin Rostock, Deutschland
2   Interdisziplinäre Fakultät Leben, Licht & Materie, Universität Rostock, Deutschland
,
Melanie Schünemann
1   Klinik und Poliklinik für Augenheilkunde, Universitätsmedizin Rostock, Deutschland
2   Interdisziplinäre Fakultät Leben, Licht & Materie, Universität Rostock, Deutschland
,
Heinrich Stolz
6   Institut für Physik, Universität Rostock, Deutschland
,
Rudolf Guthoff
1   Klinik und Poliklinik für Augenheilkunde, Universitätsmedizin Rostock, Deutschland
2   Interdisziplinäre Fakultät Leben, Licht & Materie, Universität Rostock, Deutschland
,
Oliver Stachs
1   Klinik und Poliklinik für Augenheilkunde, Universitätsmedizin Rostock, Deutschland
2   Interdisziplinäre Fakultät Leben, Licht & Materie, Universität Rostock, Deutschland
,
1   Klinik und Poliklinik für Augenheilkunde, Universitätsmedizin Rostock, Deutschland
2   Interdisziplinäre Fakultät Leben, Licht & Materie, Universität Rostock, Deutschland
› Author Affiliations

Abstract

Background For quantitative and qualitative evaluation of the imaging properties of IOLs, axial cross-sectional images can be obtained from the 3-dimensional light distribution by means of an optical bench, as is known from light sheet recordings in fluorescein baths. This paper presents a new image-processing algorithm to enhance the quality of generated axial cross-sectional images, and the two methods are then compared.

Material and Methods The 3-dimensional point spread function of a diffractive trifocal IOL (AT LISA tri 839MP, Carl Zeiss Meditec AG, Jena, Germany) was recorded on an optical bench developed in Rostock for different pupil diameters. A specially adapted image processing algorithm was then applied to the measurements, allowing through-focus curves to be generated. In addition, cross-sectional images of the IOLs studied were acquired using the light sheet method in a fluorescein bath.

Results The study clearly shows the superiority of the newly developed method over the light sheet method in terms of image quality. In addition to the individual focal points, fine focal structures as well as halos can be made visible in the cross-sectional images obtained using the new method. In the generated through-focus curves, 3 intensity peaks can be identified, which represent the near, intermediate and far focus of the tested MIOL and cannot be represented by light sheet methods.

Conclusion The interaction of the optical bench with the developed image processing algorithm allows a more detailed understanding of the image formation and false light phenomena of IOLs, which was restricted by the technical limitations of the existing light sheet method. In addition, other quantities such as the through-focus curve can be derived quantitatively.



Publication History

Received: 01 June 2022

Accepted: 29 September 2022

Article published online:
09 December 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur/References

  • 1 Modi S, Lehmann R, Maxwell A. et al. Visual and Patient-Reported Outcomes of a Diffractive Trifocal Intraocular Lens Compared with Those of a Monofocal Intraocular Lens. Ophthalmology 2021; 128: 197-207
  • 2 Davison JA, Simpson MJ. History and development of the apodized diffractive intraocular lens. J Cataract Refract Surg 2006; 32: 849-858
  • 3 Salerno L, Tiveron M, Alió J. Multifocal intraocular lenses: Types, outcomes, complications and how to solve them. Taiwan J Ophthalmol 2017; 7: 179
  • 4 Maurino V, Allan BD, Rubin GS. et al. Quality of Vision after Bilateral Multifocal Intraocular Lens Implantation. Ophthalmology 2015; 122: 700-710
  • 5 Simpson MJ. Diffractive multifocal intraocular lens image quality. Appl Opt 1992; 31: 3621
  • 6 Carretero L, González C, Fimia A. et al. Application of the Ronchi test to intraocular lenses: A comparison of theoretical and measured results. Appl Opt 1993; 32: 4132
  • 7 Bos G, Vanzo J-M, Maufoy J, Gutzwiller JL. New interferometric Method to assess intraocular Lens Characteristics. In: Silberman DM. ed. Ophthalmic Lens Design and Fabrication II. Los Angeles, CA: SPIE Proceedings; 1994: 56
  • 8 Ravalico G, Parentin F, Sirotti P. et al. Analysis of light energy distribution by multifocal intraocular lenses through an experimental optical model. J Cataract Refract Surg 1998; 24: 647-652
  • 9 Vega F, Alba-Bueno F, Millan MS. Energy efficiency of a new trifocal intraocular lens. JEOS : RP 2014; 9: 14002
  • 10 Millán MS, Vega F. Through-Focus Energy Efficiency and Longitudinal Chromatic Aberration of Three Presbyopia-Correcting Intraocular Lenses. Transl Vis Sci Technol 2020; 9: 13
  • 11 Eppig T, Rubly K, Rawer A. et al. Visualization of Light Propagation with Multifocal Intraocular Lenses Using the Ouzo Effect. Biomed Res Int 2019; 2019: 6425040
  • 12 Petelczyc K, Kolodziejczyk A, Błocki N. et al. Model of the light sword intraocular lens: in-vitro comparative studies. Biomed Opt Express 2020; 11: 40
  • 13 Reiß S, Forbrig J, Guthoff R. et al. Optimierung der Visualisierungstechnik für Strahlenverläufe durch Intraokularlinsen zur Charakterisierung multifokaler Abbildungseigenschaften von Fresnel-Zonenplatten. Klin Monbl Augenheilkd 2014; 231: 1183-1186
  • 14 Son HS, Łabuz G, Khoramnia R. et al. Visualization of Forward Light Scatter in Opacified Intraocular Lenses and Straylight Assessment. Diagnostics (Basel) 2021; 11: 1512
  • 15 Hinze U, El-Tamer A, Doskolovich LL. et al. Additive manufacturing of a trifocal diffractive-refractive lens. Opt Commun 2016; 372: 235-240
  • 16 Holladay JT, Piers PA, Koranyi G. et al. A New Intraocular Lens Design to Reduce Spherical Aberration of Pseudophakic Eyes. J Refract Surg 2002; 18: 683-691
  • 17 Wahl S, Song C, Ohlendorf A. Comparison of two devices to simulate vision with intraocular lenses. Clin Ophthalmol 2019; 13: 123-130
  • 18 Gerlach M, Guthoff R, Stachs O. et al. Präklinische Bewertung von Intraokularlinsen durch simulierte Implantation. Klin Monbl Augenheilkd 2018; 235: 1332-1341
  • 19 Sievers J, Elsner R, Bohn S. et al. Method for the generation and visualization of cross-sectional images of three-dimensional point spread functions for rotationally symmetric intraocular lenses. Biomed Opt Express 2022; 13: 1087
  • 20 Terwee T, Weeber H, van der Mooren M. et al. Visualization of the retinal image in an eye model with spherical and aspheric, diffractive, and refractive multifocal intraocular lenses. J Refract Surg 2008; 24: 223-232
  • 21 Son HS, Labuz G, Khoramnia R. et al. Ray propagation imaging and optical quality evaluation of different intraocular lens models. PLoS One 2020; 15: e0228342
  • 22 Holladay JT. Spherical Aberration: The Next Frontier. Only by understanding the math can ophthalmologists target ideal correction for their patients. Cataract & Refractive Surgery Today. Nov. 2006. Accessed November 08, 2022 at: https://crstoday.com/articles/2006-nov/crst1106_18-php/
  • 23 Amigó A, Bonaque-González S. Q Factor Presbylasik. Fundamentals and therapeutic approach. J Emmetropia 2012; 3: 167-171
  • 24 Borkenstein AF, Borkenstein EM, Luedtke H. et al. Impact of decentration and tilt on spherical, aberration correcting and specific aspherical intraocular lenses; an optical bench analysis. Ophthalmic Res 2022; 65: 425-436
  • 25 Alio JL, Plaza-Puche AB, Javaloy J. et al. Comparison of a New Refractive Multifocal Intraocular Lens with an Inferior Segmental Near Add and a Diffractive Multifocal Intraocular Lens. Ophthalmology 2012; 119: 555-563