Subscribe to RSS
DOI: 10.1055/a-1954-3155
One-Step Simultaneous Synthesis of an Industrially Important Rubber Accelerator and a Lubricant Additive by Disulfide Bond Contraction
We thank Hebi Uhoo New Materials Co., Ltd. for financial support of this project. This work was also supported by the National Natural Science Foundation of China (grant no. 21872068) and the Technology Innovation Fund of Nanjing University.
Abstract
A sustainable and atom-economic synthesis of the widely used rubber accelerator tetramethylthiuram monosulfide (TMTM) from tetramethylthiuram disulfide is reported. Triphenyl phosphite (TPPi) is employed as a green reductant to replace the usual sodium cyanide, which poses a severe safety risk due to its high toxicity. The new process proceeds smoothly under mild conditions with an excellent yield of TMTM. This single-step one-pot method also has the potential for producing the industrially important lubricant additive O,O,O-triphenyl thiophosphate as a high-added-value byproduct.
Key words
rubber accelerators - lubricant additives - disulfide contraction - green chemistry - reduction - tetramethylthiuram monosulfideSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1954-3155.
- Supporting Information
Publication History
Received: 29 August 2022
Accepted after revision: 30 September 2022
Accepted Manuscript online:
30 September 2022
Article published online:
28 October 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Gradwell MH. S, Grooff D. J. Appl. Polym. Sci. 2002; 83: 1119
- 2 Steudel R, Steudel Y, Mak AM. J. Org. Chem. 2006; 71: 9302
- 3 Heideman G, Datta R, Noordermeer J, Baarle B. Rubber Chem. Technol. 2004; 77: 512
- 4 Kruger FW. H, McGill WJ. J. Appl. Polym. Sci. 1991; 42: 2661
- 5 Valentín JL, Rodríguez A, Ernández AM, González L. J. Appl. Polym. Sci. 2010; 93: 1756
- 6 Nieuwenhuizen P, Duin MV, McGill WJ, Put J, Reedijk J. Rubber Chem. Technol. 1997; 70: 368
- 7 Sun Y, Wang J, Sun L, Hua J, Wang Z. Macromol. Mater. Eng. 2021; 306: 2100057
- 8 Geyser M, McGill WJ. J. Appl. Polym. Sci. 1995; 55: 215
- 9 Wang X, Wu C.-Y, Li Y.-S, Dong Z.-B. Eur. J. Org. Chem. 2020; 6770
- 10 Wu Y.-X, Peng K, Li J.-H, Dong Z.-B. Synthesis 2020; 52: 3001
- 11 Xia X.-L, Zhu Q.-L, Chen J.-Q, Shi Z, Dong Z.-B. Synthesis 2022; 54: 475
- 12 Peng H.-Y, Wu Y.-X, Dong Z.-B. Synthesis 2020; 52: 135
- 13 Knoth W, Gattow G. Z. Anorg. Allg. Chem. 1988; 556: 141
- 14 Theophilus P. US 2706205, 1955
- 15 Mandalapu D, Kushwaha B, Gupta S, Krishna S, Srivastava N, Shukla M, Singh P, Chauhan BS, Goyani R, Maikhuri JP, Sashidhara KV, Kumar B, Tripathi R, Shukla PK, Siddiqi MI, Lal J, Gupta G, Sharma VL. Eur. J. Med. Chem. 2017; 143: 632
- 16 Okamoto K, Housekeeper JB, Luscombe CK. Appl. Organomet. Chem. 2013; 27: 639
- 17 Haruhiko H, Yasunosuke T. JP H04178364, 1992
- 18 Harpp DN, Gleason JG, Snyder JP. J. Am. Chem. Soc. 1968; 90: 4181
- 19 Harpp DN, Gleason JG. J. Org. Chem. 1970; 35: 3259
- 20 Bernardes GJ. L, Grayson EJ, Thompson S, Chalker JM, Errey JC, El Oualid F, Claridge TD. W, Davis BG. Angew. Chem. Int. Ed. 2008; 47: 2244
- 21 Schönberg A, Barakat MZ. J. Chem. Soc. 1949; 892
- 22 Mangolini F, Rossi A, Spencer ND. J. Phys. Chem. C 2012; 116: 5614
- 23 Xu M, Li D. Hangkong Cailiao Xuebao 2003; 23: 45
- 24 Mangolini F, Rossi A, Spencer ND. Tribol. Lett. 2009; 35: 31
- 25 Mangolini F, Rossi A, Spencer ND. Tribol. Int. 2011; 44: 670
- 26 The prices are based on the Guidechem Chemical Network (accessed Oct 20, 2022): https://www.guidechem.com
- 27 Li L, Feng W.-Q, Welle A, Levkin PA. Angew. Chem. Int. Ed. 2016; 55: 13765
- 28 Adhikari S, Yang X, Xia Y. Anal. Chem. 2018; 90: 13036
- 29 Kapanda CN, Muccioli GG, Labar G, Poupaert JH, Lambert DM. J. Med. Chem. 2009; 52: 7310
- 30 De Visser PC, Plantenburg GJ. US 20110015384, 2010
- 31 Zhang Y, Cai Z, Chi Y, Zeng X, Zhao Y. Org. Lett. 2021; 23: 5158
- 32 Hernández J, Goycoolea FM, Zepeda-Rivera D, Juárez-Onofre J, Martínez K, Lizardi J, Salas-Reyes M, Gordillo B, Velázquez-Contreras C, García-Barradas O, Cruz-Sánchez S, Domínguez Z. Tetrahedron 2006; 62: 2520
- 33 Tetramethylthiuram Monosulfide (TMTM) and O,O,O-Triphenyl Thiophosphate (TPPT) A 25 mL round-bottomed flask was charged with TMTD (600 mg, 2.5 mmol), TPPi (786 μL, 3.0 mmol), and MeCN (10 mL), and the mixture was magnetically stirred at 80 °C for 10 h. When the reaction was complete (HPLC), the crude product was purified by column chromatography [silica gel, EtOAc–PE (1:100 to 1:4)] and the solvent was removed under vacuum to give TMTM as a yellow powder; yield: 386 mg (74%). 1H NMR (400 MHz, CDCl3): δ = 3.53 (s, 6 H), 3.43 (s, 6 H). 13C NMR (110 MHz, CDCl3): δ = 187.36, 44.98, 44.03. MS (ESI): m/z [M + H]+ calcd for C6H13N2S3: 209; found: 209. Cold crystallization, filtration, washing with MeOH, and drying at 40 °C for 30 min gave TPPT as a white solid; yield: 380 mg (45%). 1H NMR (400 MHz, CDCl3): δ = 7.40–7.33 (m, 6 H), 7.25–7.21 (m, 9 H). 31P NMR (162 MHz, CDCl3): δ = 53.04. 13C NMR (110 MHz, CDCl3): δ = 150.74, 150.66, 129.74, 129.73, 125.75, 121.21, 121.16. MS (ESI): m/z [M + H]+ calcd for C18H16O3PS: 343; found: 343.