RSS-Feed abonnieren

DOI: 10.1055/a-1959-3021
Tinnitus und multimodale kortikale Interaktion
Artikel in mehreren Sprachen: deutsch | English
Zusammenfassung
Mit dem Begriff des subjektiven Tinnitus wird ein wahrgenommenes Geräusch ohne externe Quelle beschrieben. Daher scheint es naheliegend, dass Tinnitus als rein auditives, sensorisches Problem verstanden werden kann. Aus klinischer Sicht ist das jedoch eine sehr unzureichende Beschreibung, da bei chronischem Tinnitus erhebliche Komorbiditäten vorliegen. Neurophysiolgische Untersuchungen mit unterschiedlichen bildgebenden Verfahren ergeben ein sehr ähnliches Bild, da bei Patienten mit chronischem Tinnitus nicht nur das auditive System betroffen ist, sonderen ein weitverzweigtes subkortikales und kortikales Netzwerk. Neben auditiven Verarbeitungssystemen sind insbesondere Netzwerke bestehend aus frontalen und parietalen Regionen gestört. Aus diesem Grund wird Tinnitus von einigen Autoren als Netzwerk-Störung konzeptualisiert und nicht als eine Störung eines eng umschriebenen Systems. Diese Ergebnisse und diese Sichtweise legen nahe, dass Tinnitus auf fach- und modalitätsübergreifende Weise diagnostiziert und behandelt werden muss.
Schlüsselwörter
Tinnitus - Komorbidität - bildgebende Verfahren - funktionelles Kernspintomographie - Elektroenzephalographie - MagnetenzephalographiePublikationsverlauf
Artikel online veröffentlicht:
02. Mai 2023
© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Langguth B, Kreuzer PM, Kleinjung T. et al. Tinnitus: causes and clinical management. Lancet Neurol 2013; 12: 920-930
- 2 Eggermont JJ, Roberts LE. The neuroscience of tinnitus. Trends in neurosciences 2004; 27: 676-682
- 3 Rauschecker JP, Tian B, Hauser M. Processing of complex sounds in the macaque nonprimary auditory cortex. Science 1995; 268: 111-114
- 4 Brugge JF, Merzenich MM. Responses of neurons in auditory cortex of the macaque monkey to monaural and binaural stimulation. J Neurophysiol 1973; 36: 1138-1158
- 5 Mazurek B, Hesse G, Dobel C. et al. Chronic Tinnitus. Dtsch Arztebl Int 2022; 119: 219-225
- 6 Andersson G, McKenna L. The role of cognition in tinnitus. Acta Otolaryngol Suppl 2006; 10.1080/03655230600895226 39-43
- 7 Mohamad N, Hoare DJ, Hall DA. The consequences of tinnitus and tinnitus severity on cognition: A review of the behavioural evidence. Hear Res 2016; 332: 199-209
- 8 Tegg-Quinn S, Bennett RJ, Eikelboom RH. et al. The impact of tinnitus upon cognition in adults: A systematic review. Int J Audiol 2016; 55: 533-540
- 9 Zäske R, Frisius N, Ivansic D. et al. Phonetic perception but not perception of speaker gender is impaired in chronic tinnitus. Prog Brain Res 2021; 260: 397-422
- 10 Ivansic D, Besteher B, Gantner J. et al. Psychometric assessment of mental health in tinnitus patients, depressive and healthy controls. Psychiatry research 2019; 281: 112582
- 11 Adjamian P, Hall DA, Palmer AR. et al. Neuroanatomical abnormalities in chronic tinnitus in the human brain. Neurosci Biobehav Rev 2014; 45: 119-133
- 12 Simonetti P, Oiticica J. Tinnitus Neural Mechanisms and Structural Changes in the Brain: The Contribution of Neuroimaging Research. Int Arch Otorhinolaryngol 2015; 19: 259-265
- 13 Boyen K, Langers DR, de Kleine E. et al. Gray matter in the brain: differences associated with tinnitus and hearing loss. Hear Res 2013; 295: 67-78
- 14 Husain FT, Medina RE, Davis CW. et al. Neuroanatomical changes due to hearing loss and chronic tinnitus: a combined VBM and DTI study. Brain Res 2011; 1369: 74-88
- 15 Mahoney CJ, Rohrer JD, Goll JC. et al. Structural neuroanatomy of tinnitus and hyperacusis in semantic dementia. J Neurol Neurosurg Psychiatry 2011; 82: 1274-1278
- 16 Mühlau M, Rauschecker JP, Oestreicher E. et al. Structural brain changes in tinnitus. Cereb Cortex 2006; 16: 1283-1288
- 17 Landgrebe M, Langguth B, Rosengarth K. et al. Structural brain changes in tinnitus: grey matter decrease in auditory and non-auditory brain areas. Neuroimage 2009; 46: 213-218
- 18 Leaver AM, Renier L, Chevillet MA. et al. Dysregulation of limbic and auditory networks in tinnitus. Neuron 2011; 69: 33-43
- 19 Leaver AM, Seydell-Greenwald A, Turesky TK. et al. Cortico-limbic morphology separates tinnitus from tinnitus distress. Front Syst Neurosci 2012; 6: 21
- 20 Melcher JR, Knudson IM, Levine RA. Subcallosal brain structure: correlation with hearing threshold at supra-clinical frequencies (>8 kHz), but not with tinnitus. Hear Res 2013; 295: 79-86
- 21 Schecklmann M, Lehner A, Poeppl TB. et al. Cluster analysis for identifying sub-types of tinnitus: a positron emission tomography and voxel-based morphometry study. Brain Res 2012; 1485: 3-9
- 22 Besteher B, Gaser C, Ivanšić D. et al. Chronic tinnitus and the limbic system: Reappraising brain structural effects of distress and affective symptoms. Neuroimage Clin 2019; 24: 101976
- 23 Chen Q, Lv H, Wang Z. et al. Outcomes at 6 months are related to brain structural and white matter microstructural reorganization in idiopathic tinnitus patients treated with sound therapy. Hum Brain Mapp 2021; 42: 753-765
- 24 Makani P, Thioux M, Pyott SJ. et al. A Combined Image- and Coordinate-Based Meta-Analysis of Whole-Brain Voxel-Based Morphometry Studies Investigating Subjective Tinnitus. Brain Sci 2022; 12
- 25 Aldhafeeri FM, Mackenzie I, Kay T. et al. Neuroanatomical correlates of tinnitus revealed by cortical thickness analysis and diffusion tensor imaging. Neuroradiology 2012; 54: 883-892
- 26 Benson RR, Gattu R, Cacace AT. Left hemisphere fractional anisotropy increase in noise-induced tinnitus: a diffusion tensor imaging (DTI) study of white matter tracts in the brain. Hear Res 2014; 309: 8-16
- 27 Crippa A, Lanting CP, van Dijk P. et al. A diffusion tensor imaging study on the auditory system and tinnitus. Open Neuroimag J 2010; 4: 16-25
- 28 Seydell-Greenwald A, Raven EP, Leaver AM. et al. Diffusion imaging of auditory and auditory-limbic connectivity in tinnitus: preliminary evidence and methodological challenges. Neural Plast 2014; 2014: 145943
- 29 Lin Y, Wang J, Wu C. et al. Diffusion tensor imaging of the auditory pathway in sensorineural hearing loss: changes in radial diffusivity and diffusion anisotropy. J Magn Reson Imaging 2008; 28: 598-603
- 30 Ryu CW, Park MS, Byun JY. et al. White matter integrity associated with clinical symptoms in tinnitus patients: A tract-based spatial statistics study. Eur Radiol 2016; 26: 2223-2232
- 31 Yoo HB, De Ridder D, Vanneste S. White Matter Changes in Tinnitus: Is It All Age and Hearing Loss?. Brain Connect 2016; 6: 84-93
- 32 Ahmed S, Mohan A, Yoo HB. et al. Structural correlates of the audiological and emotional components of chronic tinnitus. Prog Brain Res 2021; 262: 487-509
- 33 van den Heuvel MP, Hulshoff Pol HE. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 2010; 20: 519-534
- 34 Husain FT, Schmidt SA. Using resting state functional connectivity to unravel networks of tinnitus. Hearing research 2014; 307: 153-162
- 35 Kok TE, Domingo D, Hassan J. et al. Resting-state Networks in Tinnitus : A Scoping Review. Clin Neuroradiol 2022;
- 36 De Ridder D, Vanneste S, Song JJ. et al. Tinnitus and the Triple Network Model: A Perspective. Clin Exp Otorhinolaryngol 2022; 15: 205-212
- 37 Koops EA, Renken RJ, Lanting CP. et al. Cortical Tonotopic Map Changes in Humans Are Larger in Hearing Loss Than in Additional Tinnitus. J Neurosci 2020; 40: 3178-3185
- 38 Schlee W, Mueller N, Hartmann T. et al. Mapping cortical hubs in tinnitus. BMC Biol 2009; 7: 80
- 39 Vanneste S, De Ridder D. Stress-Related Functional Connectivity Changes Between Auditory Cortex and Cingulate in Tinnitus. Brain Connect 2015; 5: 371-383
- 40 Mohan A, Davidson C, De Ridder D. et al. Effective connectivity analysis of inter- and intramodular hubs in phantom sound perception – identifying the core distress network. Brain Imaging Behav 2020; 14: 289-307
- 41 Paraskevopoulos E, Dobel C, Wollbrink A. et al. Maladaptive alterations of resting state cortical network in Tinnitus: A directed functional connectivity analysis of a larger MEG data set. Sci Rep 2019; 9: 15452
- 42 Tomé D, Barbosa F, Nowak K. et al. The development of the N1 and N2 components in auditory oddball paradigms: a systematic review with narrative analysis and suggested normative values. J Neural Transm (Vienna) 2015; 122: 375-391
- 43 Foxe JJ, Yeap S, Snyder AC. et al. The N1 auditory evoked potential component as an endophenotype for schizophrenia: high-density electrical mapping in clinically unaffected first-degree relatives, first-episode, and chronic schizophrenia patients. Eur Arch Psychiatry Clin Neurosci 2011; 261: 331-339
- 44 Weisz N, Wienbruch C, Dohrmann K. et al. Neuromagnetic indicators of auditory cortical reorganization of tinnitus. Brain 2005; 128: 2722-2731
- 45 Attias J, Urbach D, Gold S. et al. Auditory event related potentials in chronic tinnitus patients with noise induced hearing loss. Hear Res 1993; 71: 106-113
- 46 Jacobson GP, McCaslin DL. A reexamination of the long latency N1 response in patients with tinnitus. J Am Acad Audiol 2003; 14: 393-400
- 47 Jacobson GP, Ahmad BK, Moran J. et al. Auditory evoked cortical magnetic field (M100-M200) measurements in tinnitus and normal groups. Hear Res 1991; 56: 44-52
- 48 Colding-Jørgensen E, Lauritzen M, Johnsen NJ. et al. On the evidence of auditory evoked magnetic fields as an objective measure of tinnitus. Electroencephalogr Clin Neurophysiol 1992; 83: 322-327
- 49 Stein A, Engell A, Lau P. et al. Enhancing inhibition-induced plasticity in tinnitus--spectral energy contrasts in tailor-made notched music matter. PLoS One 2015; 10: e0126494
- 50 Stein A, Engell A, Junghoefer M. et al. Inhibition-induced plasticity in tinnitus patients after repetitive exposure to tailor-made notched music. Clin Neurophysiol 2015; 126: 1007-1015
- 51 Biswas R, Lugo A, Akeroyd MA. et al. Tinnitus prevalence in Europe: a multi-country cross-sectional population study. Lancet Reg Health Eur 2022; 12: 100250
- 52 Trochidis I, Lugo A, Borroni E. et al. Systematic Review on Healthcare and Societal Costs of Tinnitus. Int J Environ Res Public Health 2021; 18
- 53 Tziridis K, Friedrich J, Brüeggemann P. et al. Estimation of Tinnitus-Related Socioeconomic Costs in Germany. Int J Environ Res Public Health 2022; 19
- 54 Elgoyhen AB, Langguth B, De Ridder D. et al. Tinnitus: perspectives from human neuroimaging. Nat Rev Neurosci 2015; 16: 632-642
- 55 San Juan JD, Zhai T, Ash-Rafzadeh A. et al. Tinnitus and auditory cortex: using adapted functional near-infrared spectroscopy to measure resting-state functional connectivity. Neuroreport 2021; 32: 66-75
- 56 Huang B, Wang X, Wei F. et al. Notched Sound Alleviates Tinnitus by Reorganization Emotional Center. Front Hum Neurosci 2021; 15: 762492