RSS-Feed abonnieren
DOI: 10.1055/a-1965-2928
The Application of 2-Naphthols in Asymmetric Synthesis of Atropisomers
We are grateful for financial support from National Key Research and Development Program of China (2021YFF0701604), the National Natural Science Foundation of China (22231004, 22271135), Guangdong Innovative Program (2019BT02Y335), and Shenzhen Special Funds (JCYJ20210324120205016, JCYJ20210324105005015).
Abstract
The venerable axially chiral biaryl skeletons used widely in asymmetric catalysis such as BINOLs, NOBINs, QUINOLs, and CPAs possess a 2-naphthol moiety or are derived from the naphthol precursor. The hydroxy functionality offers the interaction point or serves as functional handle for synthetic elaboration. This prevalence and significance drive our studies to incorporate this nucleophile class to fabricate an assortment of atropisomers. By activating the reacting partners via distinctive mechanisms, the arylation of quinones, azo- or nitroso-naphthalenes, VQM intermediates, 1,2,4-triazole-3,5-diones, isoquinolines, and 1-bromo-2-naphthols with 2-naphthols were successfully attained. A concise account of these developments is provided in this article.
1 Introduction
2 Asymmetric Arylation with Quinones
3 Asymmetric Arylation with Electron-Deficient Arenes
4 Asymmetric Synthesis of Atropisomers with other Electrophiles
5 Conclusion
Key words
atropisomers - 2-naphthols - asymmetric synthesis - organocatalysis - arylation - quinones - election-deficient arenesPublikationsverlauf
Eingereicht: 21. September 2022
Angenommen nach Revision: 20. Oktober 2022
Accepted Manuscript online:
20. Oktober 2022
Artikel online veröffentlicht:
21. November 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Bringmann G, Menche D. Acc. Chem. Res. 2001; 34: 615
- 1b Kozlowski MC, Morgan BJ, Linton EC. Chem. Soc. Rev. 2009; 38: 3193
- 1c Bringmann G, Gulder T, Gulder TA. M, Breuning M. Chem. Rev. 2011; 111: 563
- 2a Pu L. Chem. Rev. 1998; 98: 2405
- 2b Pu L. Acc. Chem. Res. 2012; 45: 150
- 2c 1,1′-Binaphthyl-Based Chiral Materials: Our Journey . Pu L. Imperial College Press; London: 2009
- 3a LaPlante SR, Edwards PJ, Fader LD, Jakalian A, Hucke O. ChemMedChem 2011; 6: 505
- 3b LaPlante SR, Lee DF, Fandrick KR, Fandrick DR, Hucke O, Kemper R, Miller SP. F, Edwards PJ. J. Med. Chem. 2011; 54: 7005
- 3c Smyth JE, Butler NM, Keller PA. Nat. Prod. Rep. 2015; 32: 1562
- 3d Toenjes ST, Gustafson JL. Future Med. Chem. 2018; 10: 409
- 4a Chen Y, Yekta S, Yudin AK. Chem. Rev. 2003; 103: 3155
- 4b Brunel JM. Chem. Rev. 2005; 105: 857
- 5a Ding K, Guo H, Li X, Yuan Y, Wang Y. Top. Catal. 2005; 35: 105
- 5b Ding K, Li X, Ji B, Guo H, Kitamura M. Curr. Org. Synth. 2005; 2: 499
- 6 Howard RH, Alonso-Moreno C, Broomfield LM, Hughes DL, Wright JA, Bochmann M. Dalton Trans. 2009; 8667
- 7a Noyori R, Takaya H. Acc. Chem. Res. 1990; 23: 345
- 7b Berthod M, Mignani G, Woodward G, Lemaire M. Chem. Rev. 2005; 105: 1801
- 8a Akiyama T. Chem. Rev. 2007; 107: 5744
- 8b Rueping M, Kuenkel A, Atodiresei I. Chem. Soc. Rev. 2011; 40: 4539
- 8c Terada M. Curr. Org. Chem. 2011; 15: 2227
- 8d Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
- 8e Akiyama T, Mori K. Chem. Rev. 2015; 115: 9277
- 8f Maji R, Mallojjala SC, Wheeler SE. Chem. Soc. Rev. 2018; 47: 1142
- 9 Hashimoto T, Maruoka K. Chem. Rev. 2007; 107: 5656
- 10 Rokade BV, Guiry PJ. ACS Catal. 2018; 8: 624
- 11a Kočovský P, Vyskočil Š, Smrčina M. Chem. Rev. 2003; 103: 3213
- 11b Kumarasamy E, Raghunathan R, Sibi MK, Sivaguru J. Chem. Rev. 2015; 115: 11239
- 11c Wencel-Delord J, Panossian A, Leroux FR, Colobert F. Chem. Soc. Rev. 2015; 44: 3418
- 11d Atropisomerism and Axial Chirality . Lassaletta JM. World Scientific Publishing; Singapore: 2019
- 11e Mancinelli M, Bencivenni G, Pecorari D, Mazzanti A. Eur. J. Org. Chem. 2020; 4070
- 12a Baudoin O. Eur. J. Org. Chem. 2005; 4223
- 12b Bencivenni G. Synlett 2015; 26: 1915
- 12c Loxq P, Manoury E, Poli R, Deydier E, Labande A. Coord. Chem. 2016; 308: 131
- 12d Renzi P. Org. Biomol. Chem. 2017; 15: 4506
- 12e Link A, Sparr C. Chem. Soc. Rev. 2018; 47: 3804
- 12f Zilate B, Castrogiovanni A, Sparr C. ACS Catal. 2018; 8: 2981
- 12g Hayashi Y, Takikawa A, Koshino S, Ishida K. Chem. Eur. J. 2019; 25: 10319
- 12h Ilorio ND, Crotti S, Bencivenni G. Chem. Rec. 2019; 19: 2095
- 12i Metrano AJ, Miller SJ. Acc. Chem. Res. 2019; 52: 199
- 12j Nguyen TT. Org. Biomol. Chem. 2019; 17: 6952
- 12k Liao G, Zhou T, Yao Q.-J, Shi B.-F. Chem. Commun. 2019; 55: 8514
- 12l Yang H, Chen J, Zhou L. Chem. Asian J. 2020; 15: 2939
- 12m Song R, Xie Y, Jin Z, Chi YR. Angew. Chem., Int. Ed. Engl. 2021; 60: 26026
- 12n Zhao Q, Peng C, Wang Y.-T, Zhan G, Han B. Org. Chem. Front. 2021; 8: 2772
- 12o Wang J, Zhao C, Wang J. ACS Catal. 2021; 11: 12520
- 12p Zhang Z.-X, Zhai T.-Y, Ye L.-W. Chem Catal. 2021; 1: 1378
- 12q Wang G, Huang J, Zhang J, Fu Z. Org. Chem. Front. 2022; 9: 4507
- 12r Zhang X, Zhao K, Gu Z. Acc. Chem. Res. 2022; 55: 1620
- 12s Hedouin G, Hazra S, Gallou F, Handa S. ACS Catal. 2022; 12: 4918
- 12t Min X.-L, Zhang X.-L, Shen R, Zhang Q, He Y. Org. Chem. Front. 2022; 9: 2280
- 13a Ma G, Sibi MP. Chem. Eur. J. 2015; 21: 11644
- 13b Bonne D, Rodriguez J. Chem. Commun. 2017; 53: 12385
- 13c Bonne D, Rodriguez J. Eur. J. Org. Chem. 2018; 2417
- 13d Zhang Y.-C, Jiang F, Shi F. Acc. Chem. Res. 2020; 53: 425
- 13e Cheng D.-J, Shao Y.-D. Adv. Synth. Catal. 2020; 362: 3081
- 13f Corti V, Bertuzzi G. Synthesis 2020; 52: 2450
- 13g Li T.-Z, Liu S.-J, Tan W, Shi F. Chem. Eur. J. 2020; 26: 15779
- 13h Corti V, Bertuzzi G. Synthesis 2020; 52: 2450
- 13i Bao X, Rodriguez J, Bonne D. Angew. Chem. Int. Ed. 2020; 59: 12623
- 13j He X.-L, Wang C, Wen Y.-W, Wang Z, Qian S. ChemCatChem 2021; 13: 3547
- 13k Carmona JA, Rodríguez-Franco C, Fernández R, Hornillos V, Lassaletta JM. Chem. Soc. Rev. 2021; 50: 2968
- 13l Feng J, Gu Z. SynOpen 2021; 5: 68
- 13m Yao S.-D, Cheng D.-J. ChemCatChem 2021; 13: 1271
- 13n Mei G.-J, Koay W.-L, Guan C.-Y, Lu Y. Chem 2022; 8: 1855
- 13o Rodríguez-Salamanca P, Fernández R, Hornillos V, Lassaletta JM. Chem. Eur. J. 2022; 28: e202104442
- 14a Wang Y.-B, Tan B. Acc. Chem. Res. 2018; 51: 534
- 14b Da B.-C, Xiang S.-H, Li S, Tan B. Chin. J. Chem. 2021; 39: 1787
- 14c Cheng JK, Xiang S.-H, Li S, Ye L, Tan B. Chem. Rev. 2021; 121: 4805
- 14d Axially Chiral Compounds: Asymmetric Synthesis and Applications. Tan B. Wiley-VCH; Weinheim: 2021
- 14e Wu S, Xiang S.-H, Cheng JK, Tan B. Tetrahedron Chem 2022; 1: 100009
- 15a Takizawa S. Chem. Pharm. Bull. 2009; 57: 1179
- 15b Wang H. Chirality 2010; 22: 827
- 15c Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC. Chem. Rev. 2013; 113: 6234
- 16a Nakajima M, Kanayama K, Miyoshi I, Hashimoto S.-i. Tetrahedron Lett. 1995; 36: 9519
- 16b Nakajima M, Miyoshi I, Kanayama K, Hashimoto S.-i, Noji M, Koga K. J. Org. Chem. 1999; 64: 2264
- 16c Irie R, Masutani K, Katsuki T. Synlett 2000; 1433
- 16d Li X, Yang J, Kozlowski MC. Org. Lett. 2001; 3: 1137
- 16e Chu C.-Y, Hwang D.-R, Wang S.-K, Uang B.-J. Chem. Commun. 2001; 980
- 16f Hon S.-W, Li C.-H, Kuo J.-H, Barhate NB, Liu Y.-H, Wang Y, Chen C.-T. Org. Lett. 2001; 3: 869
- 16g Luo Z, Liu Q, Gong L, Cui X, Mi A, Jiang Y. Chem. Commun. 2002; 914
- 16h Li X, Hewgley JB, Mulrooney CA, Yang J, Kozlowski MC. J. Org. Chem. 2003; 68: 5500
- 16i Gao J, Reibenspies JH, Martell AE. Angew. Chem. Int. Ed. 2003; 42: 6008
- 16j Egami H, Katsuki T. J. Am. Chem. Soc. 2009; 131: 6082
- 16k Alamsetti SK, Poonguzhali E, Ganapathy D, Sekar G. Adv. Synth. Catal. 2013; 355: 2803
- 16l Horibe T, Nakagawa K, Hazeyama T, Takeda K, Ishihara K. Chem. Commun. 2019; 55: 13677
- 16m Wang P, Cen S, Gao J, Shen A, Zhang Z. Org. Lett. 2022; 24: 2321
- 17 Egami H, Matsumoto K, Oguma T, Kunisu T, Katsuki T. J. Am. Chem. Soc. 2010; 132: 13633
- 18 Narute S, Parnes R, Toste FD, Pappo D. J. Am. Chem. Soc. 2016; 138: 16553
- 19 Tian J.-M, Wang A.-F, Yang J.-S, Zhao X.-J, Tu Y.-Q, Zhang S.-Y, Chen Z.-M. Angew. Chem. Int. Ed. 2019; 58: 11023
- 20 Hayashi H, Ueno T, Kim C, Uchida T. Org. Lett. 2020; 22: 1469
- 21 Chen Y.-H, Cheng D.-J, Zhang J, Wang Y, Liu X.-Y, Tan B. J. Am. Chem. Soc. 2015; 137: 15062
- 22 Moliterno M, Cari R, Puglisi A, Antenucci A, Sperandio C, Moretti E, Sabato AD, Salvio R, Bella M. Angew. Chem. Int. Ed. 2016; 55: 6525
- 23 Coombs G, Sak MH, Miller SJ. Angew. Chem. Int. Ed. 2020; 59: 2875
- 24 Wang J.-Z, Zhou J, Xu C, Sun H, Kürti L, Xu Q.-L. J. Am. Chem. Soc. 2016; 138: 5202
- 25 Chen Y.-H, Li H.-H, Zhang X, Xiang S.-H, Li S, Tan B. Angew. Chem. Int. Ed. 2020; 59: 11374
- 26 Zhu S, Chen Y.-H, Wang Y.-B, Yu P, Li S.-Y, Xiang S.-H, Wang J.-Q, Xiao J, Tan B. Nat. Commun. 2019; 10: 4268
- 27 Qi L.-W, Mao J.-H, Zhang J, Tan B. Nat. Chem. 2018; 10: 58
- 28 Qi L.-W, Li S, Xiang S.-H, Wang J, Tan B. Nat. Catal. 2019; 2: 314
- 29 Ceng S, Huang N, Lian D, Shen A, Zhao M, Zhang Z. Nat. Commun. 2022; 13: 4735
- 30 Ding W.-Y, Yu P, An Q.-J, Bay KL, Xiang S.-H, Li S, Chen Y, Houk KN, Tan B. Chem 2020; 6: 2046
- 31 Zhang H.-H, Wang C.-S, Li C, Mei G.-J, Li Y, Shi F. Angew. Chem. Int. Ed. 2017; 56: 116
- 32 Jia S, Chen Z, Zhang N, Tan Y, Liu Y, Deng J, Yan H. J. Am. Chem. Soc. 2018; 140: 7056
- 33a Liu Y, Wu X, Li S, Xue L, Shan C, Zhao Z, Yan H. Angew. Chem. Int. Ed. 2018; 57: 6491
- 33b Tan Y, Jia S, Hu F, Liu Y, Peng L, Li D, Yan H. J. Am. Chem. Soc. 2018; 140: 16893
- 33c Huang A, Zhang L, Li D, Liu Y, Yan H, Li W. Org. Lett. 2019; 21: 95
- 33d Peng L, Li K, Xie C, Li S, Xu D, Qin W, Yan H. Angew. Chem. Int. Ed. 2019; 58: 17199
- 33e Zhang L, Shen J, Wu S, Zhong G, Wang Y.-B, Tan B. Angew. Chem. Int. Ed. 2020; 59: 23077
- 33f Li Q.-Z, Lian P.-F, Tan F.-X, Zhu G.-D, Chen C, Hao Y, Jiang W, Wang X.-H, Zhou J, Zhang S.-Y. Org. Lett. 2020; 22: 2448
- 33g Wang C.-S, Li T.-Z, Liu S.-J, Zhang Y.-C, Deng S, Jiao Y, Shi F. Chin. J. Chem. 2020; 38: 543
- 33h Liu H, Li K, Huang S, Yan H. Angew. Chem. Int. Ed. 2022; 61: e202117063
- 33i Xu D, Huang S, Hu F, Peng L, Jia S, Mao H, Gong X, Li F, Qin W, Yan H. CCS Chem. 2022; 4: 2686
- 33j Chang Y, Xie C, Liu H, Huang S, Wang P, Qin W, Yan H. Nat. Commun. 2022; 13: 1933
- 34 Wang Y.-B, Yu P, Zhou Z.-P, Zhang J, Wang J, Luo S.-H, Gu Q.-S, Houk KN, Tan B. Nat. Catal. 2019; 2: 504
- 35 Zhang J.-W, Xu J.-H, Cheng D.-J, Shi C, Liu X.-Y, Tan B. Nat. Commun. 2016; 7: 10677
- 36 Jiang P.-Y, Fan K.-F, Li S, Xiang S.-H, Tan B. Nat. Commun. 2021; 12: 2384
- 37 Li H.-H, Zhang J.-Y, Li S, Wang Y.-B, Cheng JK, Xiang S.-H, Tan B. Sci. China Chem. 2022; 65: 1142
- 38 Zhang J.-W, Jiang F, Chen Y.-H, Xiang S.-H, Tan B. Sci. China Chem. 2021; 64: 1515
- 39 Wang J, Qi X, Min X.-L, Yi W, Liu P, He Y. J. Am. Chem. Soc. 2021; 143: 10686
For selected reviews, see:
For selected reviews and book, see:
For selected examples, see:
For selected reviews, see:
For selected reviews, see:
For selected reviews, see:
For selected reviews, see:
For comprehensive reviews and book, see:
For specialized reviews according to strategies, see:
For specialized reviews according to skeletons, see:
For selected reviews and book, see:
For selected reviews of asymmetric oxidative coupling of arenols, see:
For representative examples, see:
For representative examples, see: