Synlett 2023; 34(02): 153-158
DOI: 10.1055/a-1967-1073
letter

Enantio- and Diastereoselective Assembly of Multi-Layer Folding Chiral Targets via Asymmetric Catalytic Single C–C Bond Formation

Yangxue Liu
a   Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA
,
Hossein Rouh
a   Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA
,
Yao Tang
a   Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA
,
Guanzhao Wu
a   Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA
b   School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. of China
,
Qingkai Yuan
a   Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA
,
Sai Zhang
a   Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA
,
Jia-Yin Wang
c   Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, P. R. of China
,
Shengzhou Jin
b   School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. of China
,
Ting Xu
b   School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. of China
,
Yu Wang
b   School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. of China
,
Junyi Pan
b   School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. of China
,
Daniel Unruh
a   Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA
,
Guigen Li
a   Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA
b   School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. of China
› Author Affiliations
We would like to acknowledge the financial support from the Welch Foundation (USA) (D-1361-20210327) and the National Natural ­Science Foundation of China (22071102 and 91956110).


Abstract

This work presents the first enantio- and diastereoselective assembly of multi-layer folding targets through asymmetric catalytic C–C bond formation. Pd[(S)-BINAP]Cl2 is found to be an efficient catalyst for the Suzuki–Miyaura coupling between phosphinyl bromides and benzothiadiazole boronic esters for this asymmetric assembly. The structure of the resulting chiral multi-layer folding framework is unambiguously determined by X-ray analysis and shows a nearly parallel pattern of three layers and quasi-syn and -anti configurations. Good to excellent diastereo- and enantioselectivities (up to >20:1 dr and >99:1 er) are achieved.

Supporting Information



Publication History

Received: 26 September 2022

Accepted after revision: 24 October 2022

Accepted Manuscript online:
24 October 2022

Article published online:
21 November 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Eliel EL, Wilen SH. Stereochemistry of Organic Compounds . John Wiley & Sons; New York: 1994
  • 2 Comprehensive Asymmetric Catalysis: Supplement 1 . Jacobsen EN, Pfaltz A, Yamamoto H. Springer; Berlin: 2003
  • 3 Carreira EM, Kvaerno L. Classics in Stereoselective Synthesis . Wiley-VCH; Weinheim: 2007
  • 4 Catalytic Asymmetric Synthesis, 3rd ed. Ojima I. John Wiley & Sons; Hoboken: 2010
  • 5 Zhang J, Kürti L. Natl. Sci. Rev. 2021; 8: nwaa205
  • 6 Huang G, Wen R, Wang Z, Li BS, Tang BZ. Mater. Chem. Front. 2018; 2: 1884
  • 7 Feng H.-T, Liu C, Li Q, Zhang H, Lam JW, Tang BZ. ACS Mater. Lett. 2019; 1: 192
  • 8 Zhao T, Han J, Duan P, Liu M. Acc. Chem. Res. 2020; 53: 1279
  • 9 Zhao T, Han J, Jin X, Zhou M, Liu Y, Duan P, Liu M. Research 2020; 2020: 6452123
  • 10 Moser HE, Dervan PB. Science 1987; 238: 645
  • 11 Zwang TJ, Tse EC, Barton JK. ACS Chem. Biol. 2018; 13: 1799
  • 12 Corey EJ, Czakó B, Kürti L. Molecules and Medicine . John Wiley & Sons; Hoboken: 2007
  • 13 Hruby VJ, Li G, Haskell-Luevano C, Shenderovich M. Peptide Sci. 1997; 43: 219
  • 21 Benzo[c]thiadiazole Phosphine Oxides 4; General Procedure A solution of 1 (1.0 mmol, 1 eq), 4,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzo[c][1,2,5]thiadiazole (1.3 mmol, 1.3 eq), Pd(PPh3)4 (0.05 mmol, 0.05 eq), and K2CO3 (3.0 mmol, 3 eq) in 1,4-dioxane (10 mL) under an argon atmosphere was stirred at 50 °C for 20 h. After the reaction was complete, the mixture was extracted with EtOAc and the solvent evaporated. The organic phase was dried over MgSO4, filtered and then concentrated under reduced pressure. The residue was precipitated using toluene to afford pure products 3, which were applied directly in the next step. In a pressure tube, a solution of 2 (0.2 mmol, 1 eq), 3 (0.4 mmol, 2 eq), Pd[(S)-BINAP)]Cl2 (5 mol%), and K2CO3 (0.6 mmol, 3 eq) were dissolved in toluene/EtOH (2.0 mL/2.0 mL) under an argon atmosphere and the mixture was stirred at 50 °C for 36 h. The reaction was monitored by TLC. After completion, the mixture was extracted with EtOAc, dried over MgSO4, filtered and the solvent evaporated. The residue was purified by column chromatography (hexane/EtOAc, 5:1 to 1:1) to afford pure product 4. (1-(7-([1,1′-Binaphthalen]-8-yl)benzo[c][1,2,5]thiadiazol-4-yl)naphthalen-2-yl)diphenylphosphine Oxide (4a) Bright yellow solid; 62% yield; [α]D 25 +99.7 (c 0.4, CHCl3); dr = 92:8; er = 54:46 (major), 57:43 (minor). 1H NMR (400 MHz, CDCl3): δ = 8.09 (ddd, J = 17.9, 8.2, 1.2 Hz, 2 H), 7.94 (dd, J = 6.4, 3.0 Hz, 1 H), 7.84 (dd, J = 8.5, 2.0 Hz, 1 H), 7.73–7.65 (m, 5 H), 7.64–7.58 (m, 1 H), 7.48–7.42 (m, 3 H), 7.40–7.35 (m, 4 H), 7.34–7.29 (m, 1 H), 7.24–7.16 (m, 3 H), 7.09 (d, J = 7.1 Hz, 1 H), 7.08–6.99 (m, 3 H), 6.81–6.71 (m, 5 H), 6.64 (d, J = 7.1 Hz, 1 H). 31P NMR (162 MHz, CDCl3): δ = 27.40. 13C NMR (101 MHz, CDCl3): δ = 153.03, 152.92, 142.30, 142.22, 140.71, 137.96, 136.08, 135.62, 134.93, 134.82, 133.62, 133.30, 133.11, 133.01, 132.55, 132.31, 132.27, 132.05, 131.96, 131.68, 131.52, 131.50, 131.43, 131.02, 130.88, 130.39, 130.17, 130.14, 129.97, 129.68, 129.58, 129.15, 128.89, 128.76, 128.59, 128.53, 128.41, 128.34, 128.29, 128.25, 128.13, 128.01, 127.95, 126.92, 126.72, 126.67, 126.60, 126.25, 126.00, 125.68, 125.61, 125.18. HRMS (ESI-TOF): m/z [M + H]+ calcd for C48H31N2OPS: 715.1967; found: 715.1960. dr = 92:8. er = 54:46 (major), 57:43 (minor). HPLC conditions: Daicel Chiralpak AD-3 column; hexane/2-propanol = 90:10 to 50:50, 1 mL/min. Retention times: 15.11 min (major), 18.36 min (minor), 33.97 min (major), 97.84 min (minor).