Subscribe to RSS
DOI: 10.1055/a-1967-1073
Enantio- and Diastereoselective Assembly of Multi-Layer Folding Chiral Targets via Asymmetric Catalytic Single C–C Bond Formation
We would like to acknowledge the financial support from the Welch Foundation (USA) (D-1361-20210327) and the National Natural Science Foundation of China (22071102 and 91956110).
Abstract
This work presents the first enantio- and diastereoselective assembly of multi-layer folding targets through asymmetric catalytic C–C bond formation. Pd[(S)-BINAP]Cl2 is found to be an efficient catalyst for the Suzuki–Miyaura coupling between phosphinyl bromides and benzothiadiazole boronic esters for this asymmetric assembly. The structure of the resulting chiral multi-layer folding framework is unambiguously determined by X-ray analysis and shows a nearly parallel pattern of three layers and quasi-syn and -anti configurations. Good to excellent diastereo- and enantioselectivities (up to >20:1 dr and >99:1 er) are achieved.
Key words
folding chirality - multi-layer chirality - Suzuki–Miyaura coupling - chiral phosphine amide - phosphine oxideSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1967-1073.
- Supporting Information
Publication History
Received: 26 September 2022
Accepted after revision: 24 October 2022
Accepted Manuscript online:
24 October 2022
Article published online:
21 November 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Eliel EL, Wilen SH. Stereochemistry of Organic Compounds . John Wiley & Sons; New York: 1994
- 2 Comprehensive Asymmetric Catalysis: Supplement 1 . Jacobsen EN, Pfaltz A, Yamamoto H. Springer; Berlin: 2003
- 3 Carreira EM, Kvaerno L. Classics in Stereoselective Synthesis . Wiley-VCH; Weinheim: 2007
- 4 Catalytic Asymmetric Synthesis, 3rd ed. Ojima I. John Wiley & Sons; Hoboken: 2010
- 5 Zhang J, Kürti L. Natl. Sci. Rev. 2021; 8: nwaa205
- 6 Huang G, Wen R, Wang Z, Li BS, Tang BZ. Mater. Chem. Front. 2018; 2: 1884
- 7 Feng H.-T, Liu C, Li Q, Zhang H, Lam JW, Tang BZ. ACS Mater. Lett. 2019; 1: 192
- 8 Zhao T, Han J, Duan P, Liu M. Acc. Chem. Res. 2020; 53: 1279
- 9 Zhao T, Han J, Jin X, Zhou M, Liu Y, Duan P, Liu M. Research 2020; 2020: 6452123
- 10 Moser HE, Dervan PB. Science 1987; 238: 645
- 11 Zwang TJ, Tse EC, Barton JK. ACS Chem. Biol. 2018; 13: 1799
- 12 Corey EJ, Czakó B, Kürti L. Molecules and Medicine . John Wiley & Sons; Hoboken: 2007
- 13 Hruby VJ, Li G, Haskell-Luevano C, Shenderovich M. Peptide Sci. 1997; 43: 219
- 14a Lorion MM, Maindan K, Kapdi AR, Ackermann L. Chem. Soc. Rev. 2017; 46: 7399
- 14b Biju AT, Kuhl N, Glorius F. Acc. Chem. Res. 2011; 44: 1182
- 14c Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
- 14d Akiyama T. Chem. Rev. 2007; 107: 5744
- 15a Walsh PJ, Kozlowski MC. Fundamentals of Asymmetric Catalysis . University Science Books; Sausalito (CA, USA): 2009
- 15b Liu X, Zheng H, Xia Y, Lin L, Feng X. Acc. Chem. Res. 2017; 50: 2621
- 15c Yu J, Shi F, Gong L.-Z. Acc. Chem. Res. 2011; 44: 1156
- 15d Wang Y.-B, Tan B. Acc. Chem. Res. 2018; 51: 534
- 15e Zhang Y.-C, Jiang F, Shi F. Acc. Chem. Res. 2019; 53: 425
- 15f Chen X.-Y, Gao Z.-H, Ye S. Acc. Chem. Res. 2020; 53: 690
- 16a Cao Z.-Y, Wang X, Tan C, Zhao X.-L, Zhou J, Ding K. J. Am. Chem. Soc. 2013; 135: 8197
- 16b Hao W, Harenberg JH, Wu X, MacMillan SN, Lin S. J. Am. Chem. Soc. 2018; 140: 3514
- 17a Cui X, Xu X, Lu H, Zhu S, Wojtas L, Zhang XP. J. Am. Chem. Soc. 2011; 133: 3304
- 17b Li X, Sun J. Angew. Chem. Int. Ed. 2020; 59: 17049
- 17c Lin J.-S, Li T.-T, Liu J.-R, Jiao G.-Y, Gu Q.-S, Cheng J.-T, Guo Y.-L, Hong X, Liu X.-Y. J. Am. Chem. Soc. 2018; 141: 1074
- 17d Li X, Duan M, Yu P, Houk K, Sun J. Nat. Commun. 2021; 12: 1
- 18a Zhang H, Yang Z, Zhao BN, Li G. J. Org. Chem. 2018; 83: 644
- 18b Seifert CW, Paniagua A, White GA, Cai L, Li G. Eur. J. Org. Chem. 2016; 1714
- 18c An G, Seifert C, Li G. Org. Biomol. Chem. 2015; 13: 1600
- 19a Wu G, Liu Y, Yang Z, Katakam N, Rouh H, Ahmed S, Unruh D, Surowiec K, Li G. Research 2019; 2019: 6717104
- 19b Wu G, Liu Y, Yang Z, Jiang T, Katakam N, Rouh H, Ma L, Tang Y, Ahmed S, Rahman AU. Natl. Sci. Rev. 2020; 7: 588
- 19c Liu Y, Wu G, Yang Z, Rouh H, Katakam N, Ahmed S, Unruh D, Cui Z, Lischka H, Li G. Sci. China Chem. 2020; 63: 692
- 19d Wu G, Liu Y, Rouh H, Ma L, Tang Y, Zhang S, Zhou P, Wang JY, Jin S, Unruh D. Eur. J. Chem. 2021; 27: 8013
- 19e Jin S, Wang J.-Y, Tang Y, Rouh H, Zhang S, Xu T, Wang Y, Yuan Q, Chen D, Unruh D. Front. Chem. 2022; 10: 860398
- 19f Tang Y, Wu G, Jin S, Liu Y, Ma L, Zhang S, Rouh H, Ali AI, Wang J.-Y, Xu T. J. Org. Chem. 2022; 87: 5976
- 20a Wu G, Liu Y, Yang Z, Ma L, Tang Y, Zhao X, Rouh H, Zheng Q, Zhou P, Wang J.-Y. Research 2021; 2021: 3565791
- 20b Tang Y, Jin S, Zhang S, Wu G.-Z, Wang J.-Y, Xu T, Wang Y, Unruh D, Surowiec K, Ma Y. Research 2022; 2022: 9847949
- 20c Wang JY, Tang Y, Wu GZ, Zhang S, Rouh H, Jin S, Xu T, Wang Y, Unruh D, Surowiec K. Eur. J. Chem. 2022; 28: e202104102
- 20d Rouh H, Tang Y, Xu T, Yuan Q, Zhang S, Wang J.-Y, Jin S, Wang Y, Pan J, Wood HL, McDonald JD, Li G. Research 2022; 2022: 9865108
- 21 Benzo[c]thiadiazole Phosphine Oxides 4; General Procedure A solution of 1 (1.0 mmol, 1 eq), 4,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzo[c][1,2,5]thiadiazole (1.3 mmol, 1.3 eq), Pd(PPh3)4 (0.05 mmol, 0.05 eq), and K2CO3 (3.0 mmol, 3 eq) in 1,4-dioxane (10 mL) under an argon atmosphere was stirred at 50 °C for 20 h. After the reaction was complete, the mixture was extracted with EtOAc and the solvent evaporated. The organic phase was dried over MgSO4, filtered and then concentrated under reduced pressure. The residue was precipitated using toluene to afford pure products 3, which were applied directly in the next step. In a pressure tube, a solution of 2 (0.2 mmol, 1 eq), 3 (0.4 mmol, 2 eq), Pd[(S)-BINAP)]Cl2 (5 mol%), and K2CO3 (0.6 mmol, 3 eq) were dissolved in toluene/EtOH (2.0 mL/2.0 mL) under an argon atmosphere and the mixture was stirred at 50 °C for 36 h. The reaction was monitored by TLC. After completion, the mixture was extracted with EtOAc, dried over MgSO4, filtered and the solvent evaporated. The residue was purified by column chromatography (hexane/EtOAc, 5:1 to 1:1) to afford pure product 4. (1-(7-([1,1′-Binaphthalen]-8-yl)benzo[c][1,2,5]thiadiazol-4-yl)naphthalen-2-yl)diphenylphosphine Oxide (4a) Bright yellow solid; 62% yield; [α]D 25 +99.7 (c 0.4, CHCl3); dr = 92:8; er = 54:46 (major), 57:43 (minor). 1H NMR (400 MHz, CDCl3): δ = 8.09 (ddd, J = 17.9, 8.2, 1.2 Hz, 2 H), 7.94 (dd, J = 6.4, 3.0 Hz, 1 H), 7.84 (dd, J = 8.5, 2.0 Hz, 1 H), 7.73–7.65 (m, 5 H), 7.64–7.58 (m, 1 H), 7.48–7.42 (m, 3 H), 7.40–7.35 (m, 4 H), 7.34–7.29 (m, 1 H), 7.24–7.16 (m, 3 H), 7.09 (d, J = 7.1 Hz, 1 H), 7.08–6.99 (m, 3 H), 6.81–6.71 (m, 5 H), 6.64 (d, J = 7.1 Hz, 1 H). 31P NMR (162 MHz, CDCl3): δ = 27.40. 13C NMR (101 MHz, CDCl3): δ = 153.03, 152.92, 142.30, 142.22, 140.71, 137.96, 136.08, 135.62, 134.93, 134.82, 133.62, 133.30, 133.11, 133.01, 132.55, 132.31, 132.27, 132.05, 131.96, 131.68, 131.52, 131.50, 131.43, 131.02, 130.88, 130.39, 130.17, 130.14, 129.97, 129.68, 129.58, 129.15, 128.89, 128.76, 128.59, 128.53, 128.41, 128.34, 128.29, 128.25, 128.13, 128.01, 127.95, 126.92, 126.72, 126.67, 126.60, 126.25, 126.00, 125.68, 125.61, 125.18. HRMS (ESI-TOF): m/z [M + H]+ calcd for C48H31N2OPS: 715.1967; found: 715.1960. dr = 92:8. er = 54:46 (major), 57:43 (minor). HPLC conditions: Daicel Chiralpak AD-3 column; hexane/2-propanol = 90:10 to 50:50, 1 mL/min. Retention times: 15.11 min (major), 18.36 min (minor), 33.97 min (major), 97.84 min (minor).