Subscribe to RSS
DOI: 10.1055/a-1967-1175
Chiral Proton-Transfer Shuttle Catalysts Promoted Enantioselective Nazarov Cyclization
We thank National Natural Science Foundation of China (21971119, 92156006), National Key R&D Program of China (2021YFA1500200), the 111 project (B06005) of the Ministry of Education of China, Haihe Laboratory of Sustainable Chemical Transformations, Key-Area Research and Development Program of Guangdong Province (2020B010188001) and the Fundamental Research Funds for the Central Universities for financial support.
Abstract
The Nazarov cyclization reaction is a convenient, widely used method for the synthesis of cyclopentenones. In this account, we reviewed our recent efforts on the chiral proton-transfer shuttle catalysts promoted enantioselective Nazarov cyclization. We have synthesized various chiral cyclopenta[b]indoles and chiral α,α′-disubstituted cyclopentenones by means of cooperative catalysis of a Lewis acid and a chiral spiro phosphoric acid. The mechanistic studies revealed that the chiral spiro phosphoric acid acts as a multifunctional catalyst: it co-catalyzes the cyclization of the dienone and enantioselectively catalyzes a proton-transfer reaction of the enol intermediate via a hydrogen-bonding network.
1 Introduction
2 Enantioselective Nazarov Cyclization of Indole Enones
3 Enantioselective Silicon-Directed Nazarov Cyclization
4 Conclusion
Key words
Nazarov cyclization - chiral cyclopentenones - asymmetric catalysis - chiral proton-transfer shuttle - cooperative catalysisPublication History
Received: 03 October 2022
Accepted after revision: 24 October 2022
Accepted Manuscript online:
24 October 2022
Article published online:
23 November 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Nazarov IN, Zaretskaya II. Izv. Akad. Nauk. SSSR, Ser. Khim. 1941; 211
- 2a Denmark SE, Wallace MA, Walker CB. Jr. J. Org. Chem. 1990; 55: 5543
- 2b Gibson SE, Lewis SE, Mainolfi N. J. Organomet. Chem. 2004; 689: 3873
- 2c Simeonov SP, Nunes JP. M, Guerra K, Kurteva VB, Afonso CA. M. Chem. Rev. 2016; 116: 5744
- 2d Frontier AJ, Collison C. Tetrahedron 2005; 61: 7577
- 2e Knochel P. Comprehensive Organic Synthesis II, 2nd ed. Elsevier; Amsterdam: 2014
- 2f Vinogradov MG, Turova OV, Zlotin SG. Org. Biomol. Chem. 2017; 15: 8245
- 2g Cui H.-F, Dong K.-Y, Zhang G.-W, Wang L, Ma J.-A. Chem. Commun. 2007; 2284
- 3a Aggarwal VK, Belfield AJ. Org. Lett. 2003; 5: 5075
- 3b Nie J, Zhu H.-W, Cui H.-F, Hua M.-Q, Ma J.-A. Org. Lett. 2007; 9: 3053
- 3c Rueping M, Ieawsuwan W, Antonchick AP, Nachtsheim BJ. Angew. Chem. Int. Ed. 2007; 46: 2097
- 3d Walz I, Togni A. Chem. Commun. 2008; 4315
- 3e Cao P, Deng C, Zhou Y.-Y, Sun X.-L, Zheng J.-C, Xie Z.-W, Tang Y. Angew. Chem. Int. Ed. 2010; 49: 4463
- 3f Basak AK, Shimada N, Bow WF, Vicic DA, Tius MA. J. Am. Chem. Soc. 2010; 132: 8266
- 3g Hutson GE, Türkmen YE, Rawal VH. J. Am. Chem. Soc. 2013; 135: 4988
- 3h Jolit A, Walleser PM, Yap GP. A, Tius MA. Angew. Chem. Int. Ed. 2014; 53: 6180
- 3i Raja S, Nakajima M, Rueping M. Angew. Chem. Int. Ed. 2015; 54: 2762
- 3j Takeda T, Harada H, Nishida A. Org. Lett. 2015; 17: 5184
- 3k Yang B.-M, Cai P.-J, Tu Y.-Q, Yu Z.-Y, Chen Z.-M, Wang S.-H, Wang S.-H, Zhang F.-M. J. Am. Chem. Soc. 2015; 137: 8344
- 3l Xu Z, Ren H, Wang L, Tang Y. Org. Chem. Front. 2015; 2: 811
- 3m Zhang H, Lu Z. Org. Chem. Front. 2018; 5: 1763
- 3n Mietke T, Cruchter T, Larionov VA, Faber T, Harms K, Meggers E. Adv. Synth. Catal. 2018; 360: 2093
- 3o Süsse L, Vogler M, Mewald M, Kemper B, Irran E, Oestreich M. Angew. Chem. Int. Ed. 2018; 57: 11441
- 3p Hong Y, Jarrige L, Harms K, Meggers E. J. Am. Chem. Soc. 2019; 141: 4569
- 3q Ouyang J, Kennemur JL, De CK, Farès C, List B. J. Am. Chem. Soc. 2019; 141: 3414
- 4a Liang G, Trauner D. J. Am. Chem. Soc. 2004; 126: 9544
- 4b Rueping M, Ieawsuwan W. Adv. Synth. Catal. 2009; 351: 78
- 4c For the one example using dienone without additional coordinating group, see: Metternich JB, Reiterer M, Jacobsen EN. Adv. Synth. Catal. 2020; 362: 4092
- 5a Mohr JT, Hong AY, Stoltz BM. Nat. Chem. 2009; 1: 359
- 5b Cao J, Zhu S.-F. Bull. Chem. Soc. Jpn. 2021; 94: 767
- 6 He W, Sun X.-F, Frontier AJ. J. Am. Chem. Soc. 2003; 125: 14278
- 7a Ren Y.-Y, Zhu S.-F, Zhou Q.-L. Org. Biomol. Chem. 2018; 16: 3087
- 7b Zhu S.-F. Chin. J. Chem. 2021; 39: 3211
- 8a Xu B, Zhu S.-F, Xie X.-L, Shen J.-J, Zhou Q.-L. Angew. Chem. Int. Ed. 2011; 50: 11483
- 8b Xu B, Zhu S.-F, Zhang Z.-C, Yu Z.-X, Ma Y, Zhou Q.-L. Chem. Sci. 2014; 5: 1442
- 8c Xu B, Zhu S.-F, Zuo X.-D, Zhang Z.-C, Zhou Q.-L. Angew. Chem. Int. Ed. 2014; 53: 3913
- 8d Xu B, Li M.-L, Zuo X.-D, Zhu S.-F, Zhou Q.-L. J. Am. Chem. Soc. 2015; 137: 8700
- 8e Guo J.-X, Zhou T, Xu B, Zhu S.-F, Zhou Q.-L. Chem. Sci. 2016; 7: 1104
- 8f Li M.-L, Chen M.-Q, Xu B, Zhu S.-F, Zhou Q.-L. Acta Chim. Sinica 2018; 76: 883
- 8g Li M.-L, Yu J.-H, Li Y.-H, Zhu S.-F, Zhou Q.-L. Science 2019; 366: 990
- 8h Li Y, Zhao Y.-T, Zhou T, Chen M.-Q, Li Y.-P, Huang M.-Y, Xu Z.-C, Zhu S.-F, Zhou Q.-L. J. Am. Chem. Soc. 2020; 142: 10557
- 8i Li Y, Su Y.-X, Zhao Y.-T, Liu L, Li M.-L, Zhu S.-F. ACS Catal. 2022; 12: 14143
- 9a Li Y.-P, Li Z.-Q, Zhou B, Li M.-L, Xue X.-S, Zhu S.-F, Zhou Q.-L. ACS Catal. 2019; 9: 6522
- 9b Li Y.-P, Zhu S.-F, Zhou Q.-L. Org. Lett. 2019; 21: 9391
- 10a Cheng K.-F, Cheung M.-K, Kong Y.-C. Aust. J. Chem. 1997; 50: 349
- 10b Cheng K.-F, Cao G.-A, Yu Y.-W, Kong Y.-C. Synth. Commun. 1994; 24: 65
- 11 Wang G.-P, Chen M.-Q, Zhu S.-F, Zhou Q.-L. Chem. Sci. 2017; 8: 7197
- 12a Paquette LA. Organic Reactions 1994
- 12b Trost BM, Fleming I. Comprehensive Organic Synthesis . Pergamon; Oxford: 1991
- 12c Denmark SE, Jones TK. J. Am. Chem. Soc. 1982; 104: 2642
- 12d Jones TK, Denmark SE. Helv. Chim. Acta 1983; 66: 2377
- 12e Denmark SE, Habermas KL, Hite GA. Helv. Chim. Acta 1988; 71: 168
- 12f Denmark SE, Klix RC. Tetrahedron 1988; 44: 4043
- 13 Cao J, Hu M.-Y, Liu S.-Y, Zhang X.-Y, Zhu S.-F, Zhou Q.-L. J. Am. Chem. Soc. 2021; 143: 6962
- 14 Joy S, Nakanishi W, West FG. Tetrahedron Lett. 2013; 54: 5573
For reviews, see:
For examples, see: