Synthesis 2023; 55(11): 1724-1735
DOI: 10.1055/a-1970-4452
paper
Special Issue dedicated to Prof. Cristina Nevado, recipient of the 2021 Dr. Margaret Faul Women in Chemistry Award

N-Fluorenyltryptamines as a Useful Platform for Catalytic Enantio­selective Pictet–Spengler Reactions

Alafate Adili
,
Aniket V. Sole
,
Bishwaprava Das
,
Megan E. Matter
,
Daniel Seidel
This material is based upon work supported by the National Science Foundation under grants CHE–1856613 and CHE–2154292 (to D.S.). Mass spectrometry instrumentation was supported by a grant from the National Institutes of Health (S10 OD021758-01A1).


Abstract

In the presence of a thiourea–carboxylic acid catalyst, N-9-fluorenyltryptamines undergo highly enantioselective Pictet–Spengler reactions with a range of aldehydes. The reaction works particularly well with aromatic aldehydes, tolerating electronically diverse substituents in all ring positions. Electron-deficient tryptamines are viable substrates. Removal of the fluorenyl protecting group is readily accomplished without deterioration of product ee.

Supporting Information



Publication History

Received: 15 August 2022

Accepted after revision: 31 October 2022

Accepted Manuscript online:
31 October 2022

Article published online:
05 December 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Pictet A, Spengler T. Ber. Dtsch. Chem. Ges. 1911; 44: 2030

    • Selected reviews on Pictet–Spengler and related reactions:
    • 2a Stöckigt J, Antonchick AP, Wu FR, Waldmann H. Angew. Chem. Int. Ed. 2011; 50: 8538
    • 2b Ingallina C, D’Acquarica I, Delle Monache G, Ghirga F, Quaglio D, Ghirga P, Berardozzi S, Markovic V, Botta B. Curr. Pharm. Des. 2016; 22: 1808
    • 2c Glinsky-Olivier N, Guinchard X. Synthesis 2017; 49: 2605
    • 2d Heravi MM, Zadsirjan V, Malmir M. Molecules 2018; 23: 943
    • 2e Gholamzadeh P. In Advances in Heterocyclic Chemistry, 1st ed., Vol. 127. Scriven EF. V, Ramsden CA. Academic Press; Cambridge (MA, USA): 2019: 153
    • 2f Zhu Z, Adili A, Zhao C, Seidel D. SynOpen 2019; 3: 77
    • 2g Calcaterra A, Mangiardi L, Delle Monache G, Quaglio D, Balducci S, Berardozzi S, Iazzetti A, Franzini R, Botta B, Ghirga F. Molecules 2020; 25: 414
    • 2h Zheng C, You S.-L. Acc. Chem. Res. 2020; 53: 974

      Examples of catalytic enantioselective Pictet–Spengler reactions:
    • 3a Taylor MS, Jacobsen EN. J. Am. Chem. Soc. 2004; 126: 10558
    • 3b Seayad J, Seayad AM, List B. J. Am. Chem. Soc. 2006; 128: 1086
    • 3c Wanner MJ, van der Haas RN. S, de Cuba KR, van Maarseveen JH, Hiemstra H. Angew. Chem. Int. Ed. 2007; 46: 7485
    • 3d Raheem IT, Thiara PS, Peterson EA, Jacobsen EN. J. Am. Chem. Soc. 2007; 129: 13404
    • 3e Raheem IT, Thiara PS, Jacobsen EN. Org. Lett. 2008; 10: 1577
    • 3f Sewgobind NV, Wanner MJ, Ingemann S, de Gelder R, van Maarseveen JH, Hiemstra H. J. Org. Chem. 2008; 73: 6405
    • 3g Klausen RS, Jacobsen EN. Org. Lett. 2009; 11: 887
    • 3h Muratore ME, Holloway CA, Pilling AW, Storer RI, Trevitt G, Dixon DJ. J. Am. Chem. Soc. 2009; 131: 10796
    • 3i Holloway CA, Muratore ME, Storer R. l, Dixon DJ. Org. Lett. 2010; 12: 4720
    • 3j MacDonald JP, Badillo JJ, Arevalo GE, Silva-García A, Franz AK. ACS Comb. Sci. 2012; 14: 285
    • 3k Huang D, Xu FX, Lin XF, Wang YG. Chem. Eur. J. 2012; 18: 3148
    • 3l Cai Q, Liang XW, Wang SG, Zhang JW, Zhang X, You SL. Org. Lett. 2012; 14: 5022
    • 3m Kerschgens IP, Claveau E, Wanner MJ, Ingemann S, van Maarseveen JH, Hiemstra H. Chem. Commun. 2012; 48: 12243
    • 3n Aillaud I, Barber DM, Thompson AL, Dixon DJ. Org. Lett. 2013; 15: 2946
    • 3o Toda Y, Terada M. Synlett 2013; 24: 752
    • 3p Cai Q, Liang XW, Wang SG, You SL. Org. Biomol. Chem. 2013; 11: 1602
    • 3q Mittal N, Sun DX, Seidel D. Org. Lett. 2014; 16: 1012
    • 3r Ruiz-Olalla A, Würdemann MA, Wanner MJ, Ingemann S, van Maarseveen JH, Hiemstra H. J. Org. Chem. 2015; 80: 5125
    • 3s Klausen RS, Kennedy CR, Hyde AM, Jacobsen EN. J. Am. Chem. Soc. 2017; 139: 12299
    • 3t Ahmad S, Shukla L, Szawkało J, Roszkowski P, Maurin JK, Czarnocki Z. Catal. Commun. 2017; 89: 44
    • 3u Wang S.-G, Xia Z.-L, Xu R.-Q, Liu X.-J, Zheng C, You S.-L. Angew. Chem. Int. Ed. 2017; 56: 7440
    • 3v Odagi M, Araki H, Min C, Yamamoto E, Emge TJ, Yamanaka M, Seidel D. Eur. J. Org. Chem. 2019; 486
    • 3w Glinsky-Olivier N, Yang S, Retailleau P, Gandon V, Guinchard X. Org. Lett. 2019; 21: 9446
    • 3x Andres R, Wang Q, Zhu J. J. Am. Chem. Soc. 2020; 142: 14276
    • 3y Retini M, Bartoccini F, Zappia G, Piersanti G. Eur. J. Org. Chem. 2021; 825
    • 3z Lynch-Colameta T, Greta S, Snyder SA. Chem. Sci. 2021; 12: 6181
    • 3aa Kim A, Kim A, Park S, Kim S, Jo H, Ok KM, Lee SK, Song J, Kwon Y. Angew. Chem. Int. Ed. 2021; 60: 12279
    • 3ab Chan Y.-C, Sak MH, Frank SA, Miller SJ. Angew. Chem. Int. Ed. 2021; 60: 24573
    • 3ac Nakamura S, Matsuda Y, Takehara T, Suzuki T. Org. Lett. 2022; 24: 1072
    • 3ad Andres R, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2022; 61: e202201788

      Selected reviews on asymmetric Brønsted acid catalysis:
    • 4a Yamamoto H, Futatsugi K. Angew. Chem. Int. Ed. 2005; 44: 1924
    • 4b Akiyama T. Chem. Rev. 2007; 107: 5744
    • 4c Terada M. Synthesis 2010; 1929
    • 4d Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
    • 4e Akiyama T, Mori K. Chem. Rev. 2015; 115: 9277
    • 4f Rueping M, Parmar D, Sugiono E. Asymmetric Brønsted Acid Catalysis . Wiley-VCH; Weinheim: 2015
    • 4g Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2017; 117: 10608
    • 4h Min C, Seidel D. Chem. Soc. Rev. 2017; 46: 5889
    • 4i Mitra R, Niemeyer J. ChemCatChem 2018; 10: 1221
    • 4j Merad J, Lalli C, Bernadat G, Maury J, Masson G. Chem. Eur. J. 2018; 24: 3925
    • 4k Schreyer L, Properzi R, List B. Angew. Chem. Int. Ed. 2019; 58: 12761
    • 4l Benda MC, France S. Org. Biomol. Chem. 2020; 18: 7485
    • 4m Caballero-García G, Goodman JM. Org. Biomol. Chem. 2021; 19: 9565

      The use of N-9-fluorenyl imines in asymmetric catalysis is known. Examples:
    • 5a Takamura M, Hamashima Y, Usuda H, Kanai M, Shibasaki M. Angew. Chem. Int. Ed. 2000; 39: 1650
    • 5b Zhu Y, Buchwald SL. J. Am. Chem. Soc. 2014; 136: 4500
    • 6a Min C, Mittal N, Sun DX, Seidel D. Angew. Chem. Int. Ed. 2013; 52: 14084
    • 6b Zhao C, Seidel D. J. Am. Chem. Soc. 2015; 137: 4650
    • 6c Min C, Lin C.-T, Seidel D. Angew. Chem. Int. Ed. 2015; 54: 6608
    • 6d Zhu Z, Odagi M, Zhao C, Abboud KA, Kirm HU, Saame J, Lõkov M, Leito I, Seidel D. Angew. Chem. Int. Ed. 2020; 59: 2028
    • 6e Zhu Z, Odagi M, Supantanapong N, Xu W, Saame J, Kirm H.-U, Abboud KA, Leito I, Seidel D. J. Am. Chem. Soc. 2020; 142: 15252

      Selected reviews on catalysis with chiral anions and anion-binding catalysis:
    • 7a Lacour J, Hebbe-Viton V. Chem. Soc. Rev. 2003; 32: 373
    • 7b Lacour J, Moraleda D. Chem. Commun. 2009; 7073
    • 7c Zhang Z, Schreiner PR. Chem. Soc. Rev. 2009; 38: 1187
    • 7d Beckendorf S, Asmus S, Mancheño OG. ChemCatChem 2012; 4: 926
    • 7e Avila EP, Amarante GW. ChemCatChem 2012; 4: 1713
    • 7f Phipps RJ, Hamilton GL, Toste FD. Nat. Chem. 2012; 4: 603
    • 7g Woods PA, Smith AD. Supramol. Chem.: Mol. Nanomater. 2012; 4: 1383
    • 7h Mahlau M, List B. Angew. Chem. Int. Ed. 2013; 52: 518
    • 7i Brak K, Jacobsen EN. Angew. Chem. Int. Ed. 2013; 52: 534
    • 7j Seidel D. Synlett 2014; 25: 783
    • 7k Busschaert N, Caltagirone C, Van Rossom W, Gale PA. Chem. Rev. 2015; 115: 8038
    • 7l Visco MD, Attard J, Guan Y, Mattson AE. Tetrahedron Lett. 2017; 58: 2623
    • 7m Schifferer L, Stinglhamer M, Kaur K, Macheño OG. Beilstein J. Org. Chem. 2021; 17: 2270
    • 7n Entgelmeier L.-M, Mancheño OG. Synthesis 2022; 54: 3907

      Selected reviews on asymmetric ion pairing and cooperative catalysis:
    • 8a Piovesana S, Scarpino Schietroma DM, Bella M. Angew. Chem. Int. Ed. 2011; 50: 6216
    • 8b Allen AE, MacMillan DW. C. Chem. Sci. 2012; 3: 633
    • 8c Brière J.-F, Oudeyer S, Dalla V, Levacher V. Chem. Soc. Rev. 2012; 41: 1696
    • 8d Peters R. Cooperative Catalysis. Wiley-VCH; Weinheim, Germany: 2015: 427
    • 8e Gimeno MC, Herrera RP. Eur. J. Org. Chem. 2020; 1057
  • 10 Kaupmees K, Tolstoluzhsky N, Raja S, Rueping M, Leito I. Angew. Chem. Int. Ed. 2013; 52: 11569
  • 11 The synthesis of 2p at room temperature was complete within 30 minutes, providing the product in 95% yield and with 80% ee.