Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2023; 55(11): 1724-1735
DOI: 10.1055/a-1970-4452
DOI: 10.1055/a-1970-4452
paper
Special Issue dedicated to Prof. Cristina Nevado, recipient of the 2021 Dr. Margaret Faul Women in Chemistry Award
N-Fluorenyltryptamines as a Useful Platform for Catalytic Enantioselective Pictet–Spengler Reactions
This material is based upon work supported by the National Science Foundation under grants CHE–1856613 and CHE–2154292 (to D.S.). Mass spectrometry instrumentation was supported by a grant from the National Institutes of Health (S10 OD021758-01A1).
Abstract
In the presence of a thiourea–carboxylic acid catalyst, N-9-fluorenyltryptamines undergo highly enantioselective Pictet–Spengler reactions with a range of aldehydes. The reaction works particularly well with aromatic aldehydes, tolerating electronically diverse substituents in all ring positions. Electron-deficient tryptamines are viable substrates. Removal of the fluorenyl protecting group is readily accomplished without deterioration of product ee.
Key words
Pictet–Spengler reaction - asymmetric catalysis - Brønsted acid catalysis - heterocycles - ion pairingSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1970-4452.
- Supporting Information
Publication History
Received: 15 August 2022
Accepted after revision: 31 October 2022
Accepted Manuscript online:
31 October 2022
Article published online:
05 December 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Pictet A, Spengler T. Ber. Dtsch. Chem. Ges. 1911; 44: 2030
- 2a Stöckigt J, Antonchick AP, Wu FR, Waldmann H. Angew. Chem. Int. Ed. 2011; 50: 8538
- 2b Ingallina C, D’Acquarica I, Delle Monache G, Ghirga F, Quaglio D, Ghirga P, Berardozzi S, Markovic V, Botta B. Curr. Pharm. Des. 2016; 22: 1808
- 2c Glinsky-Olivier N, Guinchard X. Synthesis 2017; 49: 2605
- 2d Heravi MM, Zadsirjan V, Malmir M. Molecules 2018; 23: 943
- 2e Gholamzadeh P. In Advances in Heterocyclic Chemistry, 1st ed., Vol. 127. Scriven EF. V, Ramsden CA. Academic Press; Cambridge (MA, USA): 2019: 153
- 2f Zhu Z, Adili A, Zhao C, Seidel D. SynOpen 2019; 3: 77
- 2g Calcaterra A, Mangiardi L, Delle Monache G, Quaglio D, Balducci S, Berardozzi S, Iazzetti A, Franzini R, Botta B, Ghirga F. Molecules 2020; 25: 414
- 2h Zheng C, You S.-L. Acc. Chem. Res. 2020; 53: 974
- 3a Taylor MS, Jacobsen EN. J. Am. Chem. Soc. 2004; 126: 10558
- 3b Seayad J, Seayad AM, List B. J. Am. Chem. Soc. 2006; 128: 1086
- 3c Wanner MJ, van der Haas RN. S, de Cuba KR, van Maarseveen JH, Hiemstra H. Angew. Chem. Int. Ed. 2007; 46: 7485
- 3d Raheem IT, Thiara PS, Peterson EA, Jacobsen EN. J. Am. Chem. Soc. 2007; 129: 13404
- 3e Raheem IT, Thiara PS, Jacobsen EN. Org. Lett. 2008; 10: 1577
- 3f Sewgobind NV, Wanner MJ, Ingemann S, de Gelder R, van Maarseveen JH, Hiemstra H. J. Org. Chem. 2008; 73: 6405
- 3g Klausen RS, Jacobsen EN. Org. Lett. 2009; 11: 887
- 3h Muratore ME, Holloway CA, Pilling AW, Storer RI, Trevitt G, Dixon DJ. J. Am. Chem. Soc. 2009; 131: 10796
- 3i Holloway CA, Muratore ME, Storer R. l, Dixon DJ. Org. Lett. 2010; 12: 4720
- 3j MacDonald JP, Badillo JJ, Arevalo GE, Silva-García A, Franz AK. ACS Comb. Sci. 2012; 14: 285
- 3k Huang D, Xu FX, Lin XF, Wang YG. Chem. Eur. J. 2012; 18: 3148
- 3l Cai Q, Liang XW, Wang SG, Zhang JW, Zhang X, You SL. Org. Lett. 2012; 14: 5022
- 3m Kerschgens IP, Claveau E, Wanner MJ, Ingemann S, van Maarseveen JH, Hiemstra H. Chem. Commun. 2012; 48: 12243
- 3n Aillaud I, Barber DM, Thompson AL, Dixon DJ. Org. Lett. 2013; 15: 2946
- 3o Toda Y, Terada M. Synlett 2013; 24: 752
- 3p Cai Q, Liang XW, Wang SG, You SL. Org. Biomol. Chem. 2013; 11: 1602
- 3q Mittal N, Sun DX, Seidel D. Org. Lett. 2014; 16: 1012
- 3r Ruiz-Olalla A, Würdemann MA, Wanner MJ, Ingemann S, van Maarseveen JH, Hiemstra H. J. Org. Chem. 2015; 80: 5125
- 3s Klausen RS, Kennedy CR, Hyde AM, Jacobsen EN. J. Am. Chem. Soc. 2017; 139: 12299
- 3t Ahmad S, Shukla L, Szawkało J, Roszkowski P, Maurin JK, Czarnocki Z. Catal. Commun. 2017; 89: 44
- 3u Wang S.-G, Xia Z.-L, Xu R.-Q, Liu X.-J, Zheng C, You S.-L. Angew. Chem. Int. Ed. 2017; 56: 7440
- 3v Odagi M, Araki H, Min C, Yamamoto E, Emge TJ, Yamanaka M, Seidel D. Eur. J. Org. Chem. 2019; 486
- 3w Glinsky-Olivier N, Yang S, Retailleau P, Gandon V, Guinchard X. Org. Lett. 2019; 21: 9446
- 3x Andres R, Wang Q, Zhu J. J. Am. Chem. Soc. 2020; 142: 14276
- 3y Retini M, Bartoccini F, Zappia G, Piersanti G. Eur. J. Org. Chem. 2021; 825
- 3z Lynch-Colameta T, Greta S, Snyder SA. Chem. Sci. 2021; 12: 6181
- 3aa Kim A, Kim A, Park S, Kim S, Jo H, Ok KM, Lee SK, Song J, Kwon Y. Angew. Chem. Int. Ed. 2021; 60: 12279
- 3ab Chan Y.-C, Sak MH, Frank SA, Miller SJ. Angew. Chem. Int. Ed. 2021; 60: 24573
- 3ac Nakamura S, Matsuda Y, Takehara T, Suzuki T. Org. Lett. 2022; 24: 1072
- 3ad Andres R, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2022; 61: e202201788
- 4a Yamamoto H, Futatsugi K. Angew. Chem. Int. Ed. 2005; 44: 1924
- 4b Akiyama T. Chem. Rev. 2007; 107: 5744
- 4c Terada M. Synthesis 2010; 1929
- 4d Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
- 4e Akiyama T, Mori K. Chem. Rev. 2015; 115: 9277
- 4f Rueping M, Parmar D, Sugiono E. Asymmetric Brønsted Acid Catalysis . Wiley-VCH; Weinheim: 2015
- 4g Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2017; 117: 10608
- 4h Min C, Seidel D. Chem. Soc. Rev. 2017; 46: 5889
- 4i Mitra R, Niemeyer J. ChemCatChem 2018; 10: 1221
- 4j Merad J, Lalli C, Bernadat G, Maury J, Masson G. Chem. Eur. J. 2018; 24: 3925
- 4k Schreyer L, Properzi R, List B. Angew. Chem. Int. Ed. 2019; 58: 12761
- 4l Benda MC, France S. Org. Biomol. Chem. 2020; 18: 7485
- 4m Caballero-García G, Goodman JM. Org. Biomol. Chem. 2021; 19: 9565
- 5a Takamura M, Hamashima Y, Usuda H, Kanai M, Shibasaki M. Angew. Chem. Int. Ed. 2000; 39: 1650
- 5b Zhu Y, Buchwald SL. J. Am. Chem. Soc. 2014; 136: 4500
- 6a Min C, Mittal N, Sun DX, Seidel D. Angew. Chem. Int. Ed. 2013; 52: 14084
- 6b Zhao C, Seidel D. J. Am. Chem. Soc. 2015; 137: 4650
- 6c Min C, Lin C.-T, Seidel D. Angew. Chem. Int. Ed. 2015; 54: 6608
- 6d Zhu Z, Odagi M, Zhao C, Abboud KA, Kirm HU, Saame J, Lõkov M, Leito I, Seidel D. Angew. Chem. Int. Ed. 2020; 59: 2028
- 6e Zhu Z, Odagi M, Supantanapong N, Xu W, Saame J, Kirm H.-U, Abboud KA, Leito I, Seidel D. J. Am. Chem. Soc. 2020; 142: 15252
- 7a Lacour J, Hebbe-Viton V. Chem. Soc. Rev. 2003; 32: 373
- 7b Lacour J, Moraleda D. Chem. Commun. 2009; 7073
- 7c Zhang Z, Schreiner PR. Chem. Soc. Rev. 2009; 38: 1187
- 7d Beckendorf S, Asmus S, Mancheño OG. ChemCatChem 2012; 4: 926
- 7e Avila EP, Amarante GW. ChemCatChem 2012; 4: 1713
- 7f Phipps RJ, Hamilton GL, Toste FD. Nat. Chem. 2012; 4: 603
- 7g Woods PA, Smith AD. Supramol. Chem.: Mol. Nanomater. 2012; 4: 1383
- 7h Mahlau M, List B. Angew. Chem. Int. Ed. 2013; 52: 518
- 7i Brak K, Jacobsen EN. Angew. Chem. Int. Ed. 2013; 52: 534
- 7j Seidel D. Synlett 2014; 25: 783
- 7k Busschaert N, Caltagirone C, Van Rossom W, Gale PA. Chem. Rev. 2015; 115: 8038
- 7l Visco MD, Attard J, Guan Y, Mattson AE. Tetrahedron Lett. 2017; 58: 2623
- 7m Schifferer L, Stinglhamer M, Kaur K, Macheño OG. Beilstein J. Org. Chem. 2021; 17: 2270
- 7n Entgelmeier L.-M, Mancheño OG. Synthesis 2022; 54: 3907
- 8a Piovesana S, Scarpino Schietroma DM, Bella M. Angew. Chem. Int. Ed. 2011; 50: 6216
- 8b Allen AE, MacMillan DW. C. Chem. Sci. 2012; 3: 633
- 8c Brière J.-F, Oudeyer S, Dalla V, Levacher V. Chem. Soc. Rev. 2012; 41: 1696
- 8d Peters R. Cooperative Catalysis. Wiley-VCH; Weinheim, Germany: 2015: 427
- 8e Gimeno MC, Herrera RP. Eur. J. Org. Chem. 2020; 1057
- 9a Hoffmann S, Seayad AM, List B. Angew. Chem. Int. Ed. 2005; 44: 7424
- 9b Klussmann M, Ratjen L, Hoffmann S, Wakchaure V, Goddard R, List B. Synlett 2010; 2189
- 10 Kaupmees K, Tolstoluzhsky N, Raja S, Rueping M, Leito I. Angew. Chem. Int. Ed. 2013; 52: 11569
- 11 The synthesis of 2p at room temperature was complete within 30 minutes, providing the product in 95% yield and with 80% ee.
Selected reviews on Pictet–Spengler and related reactions:
Examples of catalytic enantioselective Pictet–Spengler reactions:
Selected reviews on asymmetric Brønsted acid catalysis:
The use of N-9-fluorenyl imines in asymmetric catalysis is known. Examples:
Selected reviews on catalysis with chiral anions and anion-binding catalysis:
Selected reviews on asymmetric ion pairing and cooperative catalysis: