Synlett 2023; 34(03): 243-248
DOI: 10.1055/a-1971-6187
letter

Catalytic Benzannulation Reactions of Enynones for Accessing Heterocycle-Incorporating Diarylmethanes

Jia-Yin Wang
a   School of Pharmacy, Changzhou University, Changzhou 213164, P. R. of China
b   Institute of Chemistry and Biomedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. of China
,
Guigen Li
b   Institute of Chemistry and Biomedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. of China
c   Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
,
Wen-Juan Hao
d   School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. of China
,
Bo Jiang
d   School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. of China
› Author Affiliations
National Natural Science Foundation of China (No. 21971090, 22071102, and 91956110) and the Robert A. Welch Foundation (D-1361-20210327).


Abstract

Two catalytic benzannulation/1,4-addition cascades of available enynones with indoles or tetronic acid-derived enamino lactones as C-nucleophiles are reported, producing 53 examples of heterocycle-incorporating diarylmethanes with moderate to excellent yields. The combination of AgOTf and Sc(OTf)3 permits bimetallic synergistic catalysis of the reaction of enynones with indoles to access 35 triarylmethanes in generally good yields with ortho-naphthoquinone methides, generated in situ, as the key intermediates. Exchanging indoles for tetronic acid-derived enamino lactones resulted in 18 diarylmethanes by the Ag-catalyzed benzannulation/1,4-addition cascade. Both reactions are advantageous for their high atom utilization and mild reaction conditions, providing intriguing complementary approaches for the direct syntheses of new heterocycle-containing diarylmethanes.

Supporting Information



Publication History

Received: 20 September 2022

Accepted after revision: 02 November 2022

Accepted Manuscript online:
02 November 2022

Article published online:
28 November 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Duxbury DF. Chem. Rev. 1993; 93: 381
    • 1b Nair V, Thomas S, Mathew SC, Abhilash KG. Tetrahedron 2006; 62: 6731
    • 1c Shiri M, Zolfigol MA, Kruger HG, Tanbakouchian Z. Chem. Rev. 2010; 110: 2250
    • 2a Finocchiaro P, Gust D, Mislow K. J. Am. Chem. Soc. 1974; 96: 3198
    • 2b Dothager RS, Putt KS, Allen BJ, Leslie BJ, Nesterenko V, Hergenrother PJ. J. Am. Chem. Soc. 2005; 127: 8686
    • 2c Palchaudhuri R, Nesterenko V, Hergenrother PJ. J. Am. Chem. Soc. 2008; 130: 10274
    • 2d Gemma S, Campiani G, Butini S, Kukreja G, Joshi BP, Persico M, Catalanotti B, Novellino E, Fattorusso E, Nacci V, Savini L, Taramelli D, Basilico N, Morace G, Yardley V, Fattorusso C. J. Med. Chem. 2007; 50: 595
    • 2e Snyder SA, Breazzano SP, Ross AG, Lin Y, Zografos AL. J. Am. Chem. Soc. 2009; 131: 1753
    • 2f Mibu N, Yokomizo K, Uyeda M, Sumoto K. Chem. Pharm. Bull. 2005; 53: 1171
    • 2g Mibu N, Yokomizo K, Miyata T, Sumoto K. J. Heterocycl. Chem. 2010; 47: 1434
    • 2h Panda G, Shagufta Shagufta, Mishra JK, Chaturvedi V, Srivastava AK, Srivastava R, Srivastava BS. Bioorg. Med. Chem. 2004; 12: 5269
    • 2i Panda G, Shagufta Shagufta, Srivastava AK, Sinha S. Bioorg. Med. Chem. Lett. 2005; 15: 5222
    • 2j Kashyap VK, Gupta RK, Shrivastava R, Srivastava BS, Srivastava R, Parai MK, Singh P, Bera S, Panda G. J. Antimicrob. Chemother. 2012; 67: 1188
    • 3a Cho SD, Yoon K, Chintharlapalli S, Abdelrahim M, Lei P, Hamilton S, Khan S, Ramaiah SK, Safe S. Cancer Res. 2007; 67: 674
    • 3b Wood PM, Woo LW. L, Labrosse J.-R, Trusselle MN, Abbate S, Longhi G, Castiglioni E, Lebon F, Purohit A, Reed MJ, Potter BV. L. J. Med. Chem. 2008; 51: 4226
    • 3c Mondal S, Panda G. RSC Adv. 2014; 4: 28317
    • 3d Mondal S, Roy D, Panda G. ChemCatChem 2018; 10: 1941
    • 4a Duan H, Meng L, Bao D, Zhang H, Li Y, Lei A. Angew. Chem. Int. Ed. 2010; 49: 6387
    • 4b Schäfer G, Bode JW. Angew. Chem. Int. Ed. 2011; 50: 10913
    • 4c Gao J, Wang J.-Q, Song Q.-W, He L.-N. Green Chem. 2011; 13: 1182
    • 4d Khodaei MM, Nazari E. Tetrahedron Lett. 2012; 53: 5131
    • 4e Thirupathi P and Kim S. S.;. J. Org. Chem. 2009; 74: 7755
    • 4f Tangdenpaisal K, Phakhodee W, Ruchirawat S, Ploypradith P. Tetrahedron 2013; 69: 933
    • 4g Singh P, Dinda SK, Shagufta Shagufta, Panda G. RSC Adv. 2013; 3: 12100
    • 4h Wilsdorf M, Leichnitz D, Reissig H.-U. Org. Lett. 2013; 15: 2494
    • 5a Liégault B, Renaud J.-L, Bruneau C. Chem. Soc. Rev. 2008; 37: 290
    • 5b Bej A, Srimani D, Sarkar A. Green Chem. 2012; 14: 661
    • 5c Endo K, Ishioka T, Ohkubo T, Shibata T. J. Org. Chem. 2012; 77: 7223
    • 5d Amatore M, Gosmini C. Chem. Commun. 2008; 5019
    • 5e Schade MA, Metzger A, Hug S, Knochel P. Chem. Commun. 2008; 3046
    • 5f Manolikakes G, Hernandez CM, Schade MA, Metzger A, Knochel P. J. Org. Chem. 2008; 73: 8422
    • 5g Duplais C, Krasovskiy A, Wattenberg A, Lipshutz BH. Chem. Commun. 2010; 46: 562
    • 5h Knochel P, Schade MA, Bernhardt S, Manolikakes G, Metzger A, Piller FM, Rohbogner CJ, Mosrin M. Beilstein J. Org. Chem. 2011; 7: 1261
    • 5i Chan DC. M, Rosowsky A. J. Org. Chem. 2005; 70: 1364
    • 7a Yang B, Gao S. Chem. Soc. Rev. 2018; 47: 7926
    • 7b Osipov DV, Osyanin VA, Klimochkin YN. Russ. Chem. Rev. 2017; 86: 625
    • 7c Li W, Xu X, Zhang P, Li P. Chem. Asian J. 2018; 13: 2350
    • 7d Caruana L, Fochi M, Bernardi L. Molecules 2015; 20: 11733
    • 7e Parra A, Tortosa M. ChemCatChem 2015; 7: 1524
    • 7f Wang J.-Y, Hao W.-J, Tu S.-J, Jiang B. Org. Chem. Front. 2020; 7: 1743
    • 8a Sawama Y, Shishido Y, Yanase T, Kawamoto K, Goto R, Monguchi Y, Kita Y, Sajiki H. Angew. Chem. Int. Ed. 2013; 52: 1515
    • 8b Zhou D, Yu X, Zhang J, Wang W, Xie H. Org. Lett. 2018; 20: 174
    • 8c Lukashenko AV, Osyanin VA, Osipov DV, Klimochkin YN. J. Org. Chem. 2017; 82: 1517
    • 8d Büyükkidan B, Ceylan M. J. Chem. Res. 2003; 749
    • 8e Taheri A, Lai B, Yang J, Zhang J, Gu Y. Tetrahedron 2016; 72: 479
  • 9 Wu F, Zhu S. Org. Lett. 2019; 21: 1488
  • 10 Wu F, Zhang L, Zhu S. Org. Chem. Front. 2020; 7: 3387
    • 11a Wang D, Wang S.-C, Hao W.-J, Tu S.-J, Jiang B. Chin. J. Chem. 2021; 39: 106
    • 11b Wang D, Wang S.-C, Hao W.-J, Tu S.-J, Jiang B. Adv. Synth. Catal. 2020; 362: 3416
    • 12a Ji C.-L, Pan Y, Geng F.-Z, Hao W.-J, Tu S.-J, Jiang B. Org. Chem. Front. 2019; 6: 474
    • 12b Chen K, Liu S, Wang D, Hao W.-J, Zhou P, Tu S.-J, Jiang B. J. Org. Chem. 2017; 82: 11524
    • 12c Liu S, Chen K, Lan X.-C, Hao W.-J, Li G, Tu S.-J, Jiang B. Chem. Commun. 2017; 53: 10692
    • 13a Wu G, Liu Y, Yang Z, Katakam N, Rouh H, Ahmed S, Unruh D, Surowiec K, Li G. Research 2019; 6717104
    • 13b Liu Y, Wu G, Yang Z, Rouh H, Katakam N, Ahmed S, Unruh D, Cui Z, Lischka H, Li G. Sci. China Chem. 2020; 63: 692-698
    • 13c Wang J.-Y, Tang Y, Wu G.-Z, Zhang S, Rouh H, Jin S, Xu T, Wang Y, Unruh D, Surowiec K, Ma Y, Li Y, Katz C, Liang H, Cong W, Li G. Chem. Eur. J. 2022; 28: e202200183
    • 13d Tang Y, Jin S, Zhang S, Wu G.-Z, Wang J.-Y, Xu T, Wang Y, Unruh D, Surowiec K, Ma Y, Wang S, Katz C, Liang H, Li Y, Cong W, Li G. Research 2022; 9847949
    • 13e Rouh H, Tang Y, Xu T, Yuan Q, Zhang S, Wang J.-Y, Jin S, Wang Y, Pan J, Wood HL, McDonald JD, Li G. Research 2022; 9865108
    • 14a 4-Methyl-2-[(1-methyl-1H-indol-3-yl)(phenyl)methyl]-1-naphthol (3a); Typical Procedure In a 10 mL reaction vial, enynone 1a (0.4 mmol, 98.4 mg), indole 2a (0.4 mmol, 52.4 mg), AgOTf (0.04 mmol, 10 mol%, 10.2 mg), and Sc(OTf)3 (0.08 mmol, 20 mol%, 39.4 mg) were mixed in THF (4.0 mL). The mixture was stirred at rt under air for 5 h until the starting material was consumed [TLC, PE–EtOAc (10:1)]. Then the solvent was evaporated under reduced pressure, and the crude product was purified by column chromatography [silica gel, PE–EtOAc (30:1)] to give a white solid; yield: 129.7 mg (86%); mp 174–175 °C. 1H NMR (400 MHz, CDCl3): δ = 8.23–8.17 (m, 1 H), 7.95 (d, J = 7.6 Hz, 1 H), 7.57–7.48 (m, 2 H), 7.39–7.30 (m, 7 H), 7.28–7.24 (m, 1 H), 7.09–7.01 (m, 2 H), 6.60 (s, 1 H), 5.90 (s, 1 H), 5.70 (s, 1 H), 3.74 (s, 3 H), 2.59 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 148.1, 142.2, 137.8, 132.6, 129.0, 128.7, 128.7, 128.6, 127.3, 126.8, 126.1, 125.7, 125.5, 124.8, 124.0, 122.4, 122.3, 121.9, 119.9, 119.4, 115.6, 109.4, 45.0, 32.9, 18.9. HRMS (ESI): m/z [M + H]+ calcd for C27H24NO: 378.1858; found: 378.1855.
    • 14b 3-[(1-Hydroxy-4-methyl-2-naphthyl)(phenyl)methyl]-4-[(4-methylphenyl)amino]furan-2(5H)-one; Typical Procedure In a 10 mL reaction vial, enynone 1a (0.3 mmol, 73.8 mg), 4-(p-tolylamino)furan-2(5H)-one (4a, 0.3 mmol, 56.7 mg), and AgOTf (0.03 mmol, 10 mol%, 7.7 mg) were mixed in 1,4-dioxane (4.0 mL). The mixture was then stirred at 50 °C under air for 2 h until the starting material was consumed [TLC, PE–EtOAc (2:1)]. The solvent was then evaporated under reduced pressure, and the crude product was purified by column chromatography [silica gel, PE–EtOAc (6:1)] to give a white solid; yield: 117.5 mg (90%); mp 159–161 °C. 1H NMR (400 MHz, CDCl3): δ = 8.38–8.22 (m, 1 H), 8.01–7.89 (m, 1 H), 7.58–7.51 (m, 2 H), 7.43–7.33 (m, 5 H), 7.12 (d, J = 8.8 Hz, 3 H), 6.87 (d, J = 6.4 Hz, 1 H), 6.79 (s, 1 H), 6.71 (d, J = 8.4 Hz, 2 H), 5.73 (s, 1 H), 4.89–4.79 (m, 2 H), 2.61 (s, 3 H), 2.32 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 176.4, 160.6, 147.9, 138.3, 135.7, 135.6, 132.7, 130.3, 129.1, 128.2, 127.6, 127.3, 127.2, 126.6, 126.1, 125.4, 124.0, 122.8, 121.8, 121.1, 98.3, 66.8, 40.5, 20.8, 19.0. HRMS (ESI): m/z [M + H]+ calcd for C29H26NO3: 436.1913; found: 436.1879.